Modeling Reactive Metal Fragment Effects in Endgame Simulations

Patrick Buckley SURVICE Engineering pat.buckley@survice.com pat@pmc-inc.com

Detense Systems Information Analysis Center DSIAC is a DoD Information Analysis Center (IAC) sponsored by the Defense Technical Information Center (DTIC), with policy oversight provided by the Office of the Under Secretary of Defense (OUSD) for Research and Engineering (R&E). DSIAC is operated by the SURVICE Engineering Company.

Distribution A; Approved for Public Release; Distribution Unlimited

Disclaimer: The views and opinions expressed in this article are those of the authors and do not necessarily reflect the official policy or position of any agency of the U.S. government. Examples of analysis performed within this article are only examples. Assumptions made within the analysis are not reflective of the position of any U.S. government entity.

Reactive Metal Fragments (RMFs)

- Powder mixtures pressed and sintered into solid fragments.
- Example: PTFE + aluminum + tungsten. Density: 7.84 g/cm³.
- Ballistic impact heating triggers chemical reaction.
- Energy release per unit mass can exceed TNT.
- Damage potential: kinetic energy + chemical energy.

RMF Impact Effects

Peng, J., B. H. Yuan, X. Y. Sun, Y. J. Chen, and H. Chen. "Research on Penetration Behavior and After Effects of Coated Reactive Fragments Impacting Steel Targets. *International Journal of Multiphysics*, vol. 14, no. 1, p. 39, 2020.

Inert Fragment

A

Additional Damage Mechanisms Modeled for RMF

- Shotline A intersects the component
 - Kinetic energy (KE) damage effect
 - Chemical energy enhancement
- Shotline B *misses* the component
 - Chemical energy damage effect

RMF Endgame Shotline Modeling

A

Simplified RMF Model

Penetration Algorithm **Energy Deposition Algorithm** Modified Fragility Function Penetrates thin skin intact • P_K = 1.0 Released on second impact • Stops on second impact •

Indirect-Hit Damage Model

DoDIAC

Lethal radius

Simplified RMF Model Off-Shotline Effects

DoDIAC

How to Determine if a Component Is Inside the Lethal Radius

- Cover each vulnerable component's surface with points.
- Determine those with direct line of site from reaction point to surface point.
- Calculate distance from reaction point to each surface point.
- Test distances vs. lethal radius.
- Key idea: KD-Tree data structure for fast "Radius Search."

Surface Point Creation

Shotline Processing Steps

UNCLASSIFIED | Distribution Statement A: Approved for public release; distribution is unlimited.

Example Endgame: 40-mm Air Burst Projectile vs. Drone

TurboPK 64-bit Version 1.1.7 (BETA) Jul 10 2020 SURVICE Engineering / PMC

Edit Actions View Help

П

×

_

- 120 fragments, 20 grains each
- 4,000-fps ejection speed
- 20-deg side spray

Example Endgame: 40 mm vs. Drone

⁺0.0015-s timing error

✓ TurboPK 64-bit Version 1.1.7 (BETA) Jul 11 2020 SURVICE Engineering / PMC — □ × Eile Edit Actions View Help

 Image: Image:

Current viewing angles: Az 40.00 EL 26.00

Example Endgame: 40 mm vs. Drone

Steel

RMF Lethal Radius 0.0

RMF Lethal Radius 2.54

• KE only

• KE + CE
$$\rightarrow$$
 P_{K/H} = 1.0

KE + CE → P_{K/H} = 1.0
 Lethal radius effect

Example Endgame: 40mm vs. Truck

Example Endgame Run Times

- 1,000 burst locations, 20 sample point bursts at each
- $(1,000 \times 20 \times 125 = 2.5 \cdot 10^{6}$ shotlines)
- Fully parallelized + KD-Tree = speed

Alternative Point Structures

KD-Tree

Uniform Grid

1 sec Current viewing angles: Az 40.00 EL 27.00

• R-trees, BVH, Morton Curves, Hilbert curves, Peano curves....

 \times

More Complicated RMF Model

Penetration Algorithm

- RMF treated as steel
- V₅₀ increased by x%

Energy Deposition Algorithm

- Proportional to KE loss
- Minimum speed value
 for any reaction

Modified Fragility Function

- Baseline fragility
 functions
- Linear increase based on KE loss

Indirect-Hit Damage Model

- Baseline lethal radius
- Impact V for baseline
- Minimum speed value for LR = 0.0
- (KE loss)/(baseline KE) LR reduction

More Complicated RMF Model

FRMF Model Parameters	?	\times
Inert Fragments TNT Equivalent Kg.		
Reactive Metal Fragment Properties		
Surface point spacing - cm1Grid Cell Edge - cm2		
Penetration Equations		
Initial impact ballisitc limit increase % w.r.t. steel.	50	
Subsequent impact multiplier %.	50	
Lethal Radius Model		
Maximum lethal radius - cm	2.54	
Minimum lethal radius - cm	0.1	
Impact speed for max lethal rad. mps	1400	
Impact speed for zero lethal rad. mps	800	
Fragility Function Model		
Pk % increase maximum.	50	
Impact speed for max % increase mps	1400	
Impact speed for 0.0 % increase mps	800	
Apply Close		

Summary

- Demonstrated a methodology for treating RMF impacts.
- It shows large potential gains in P_{K} for RMF.
- It is fast. "Radius Search" data structures are key.
- Need quantification of lethal radii.
- Lots of work to do:
 - Per component lethal radii
 - Penetration model for RMF
 - Energy deposition model for RMF
 - Countermeasures
 - Etc.

