ALION

Vision of the Next Generation Propagation Tool in a "Fast and Furious" Three-Dimensional World

Presented by Alion Science and Technology

Emma Morgenstern

(and VIPER Team)

December 16, 2020

Agenda

- Needs and Challenges
- Vision
- Technologies and Theories
- Math and Physics
- Demo

Needs and Challenges

Flexibility

- Urban clutter
- Complex indoor network
- □ Indoor to/from outdoor transition
- □ Irregular terrain

Accuracy

- Building and environmental materials
- □ Weather
- **Speed** (lacking from existing tools)
 - True full 3D modeling in near-real time

▶ 5G

□ Millimeter-wave

Challenge in Flexibility – Urban Clutter

Challenge in Flexibility – Complex Indoor Networks

Challenge in Flexibility – Irregular Terrain

Challenge in Accuracy – Building and Environmental Materials

Challenge in Accuracy – Weather

Needs in Speed – True Full 3D Modeling in Near-Real Time

Limitation of Existing Tools

ΤοοΙ	3D	Materials	Diffraction Mechanism	Frequency Range	Weather	1
Tooll (T)	x	x	x	~	~	
Tool2 (U)	x	~	X	~	~	
Tool3 (A)	~	~	~	x	X	
						-

🧼 A L I O N

Vision

The next generation propagation tool will replace the legacy tools to better predict signal loss in accuracy in full-3D simulation. The GPU-based propagation modeling tool is capable of efficiently simulating complex wave interactions, such as wedge diffraction, curved surface diffraction, etc.

Implements

- Wider range of frequency use (low, mid, high)
- □ Millimeter-wave path analysis
- Micro-cell and pico-cell deployments
- Beamforming and phased array
- Massively MIMO networks
- Full 3D modeling and GPU-based
 - Building materials
 - Clutter geometry
 - Atmospheric conditions and weather
 - □ Wedge/surface diffraction, reflection
 - □ Volumetric/voxelization
 - □ Ray-tracing

- Can address (with RF expertise)
 - Complex clutter morphologies/dense urban deployments
 - Co-site analysis/interference avoidance analysis
 - □ Line-of-sight & BLOS calculations
 - Aggregate coverage from multiple locations
- True 3D modeling in near-real time
- Runs at a revolutionary speed (1:3000)
- Supports 5G deployment

Technologies and Theories

🥻 🕹 L I O N

Technologies and Theories – Volumetric

- The system does not merely calculate received power along a path from Tx to Rx but calculates the entire volume filled by the RF field inside a 3D space.
- Volumetric geometry representation is a 3D volumetric model composed of nested "volumetric elements" (voxels).
- A voxel is the **invisible unit** of physical space in the simulation like the **pixel** in a digital image, an unit of display space.

Technologies and Theories – Voxelization

- Each voxel will contain the attributes of its bounded space:
 - Model-specific information (surface normals and geometric hints).
 - □ A reference to the **material** it contains.
 - Can store all localized physical properties in the material definitions.
 - □ This quickly becomes expensive and impractical.

Technologies and Theories – Voxelization

To overcome this difficulty:

- Contiguous, homogenous structures, such as mountain ranges, buildings, or open-air spaces, can be treated as a single voxel.
- Represented using a larger voxel (stored with material and location data).
- Smaller voxels will populate the edges where geometry and material variation may increase.
- We envisioned the next generation propagation tool to use a tree hierarchy to organize this division:"**Octree**".
- > Deals with very large models efficiently.

Technologies and Theories – Sparse Voxel Tree

Technologies and Theories – Ray Tracing

- Ray-tracing is a way of drawing 3D picture.
- A fundamentally different rendering process than rasterization, it simulates real light more accurately.
- Where a signal has actually gone: not guesswork but actual 3D calculation.
 - Film industry.

Technologies and Theories – GPU

- GPU-based parallel computation: high speed
- Turn a laptop into a supercomputer
- NVIDIA chip (RTX3000 09/2020)

PUTTING IT ALL TOGETHER

The Science Behind:

Math and Physics

Propagation Model Architecture

Propagation Physics – Uniform Theory of Diffraction

 $\mathbf{D} = -\hat{\beta}_0'\hat{\beta}_0 D_s - \hat{\phi}'\hat{\phi}D_h$ UTD – uniform theory of diffraction Wedge diffraction coefficients $D_{s,h} = (D_1 + D_2) + R_{s,h}(D_3 + D_4)$ Energy bending Building corners $D_1 = H \cot \left(rac{\pi + (\phi - \phi')}{2n}
ight) F \left[k L^i a^+ (\phi - \phi')
ight]$ □ Aircraft wing edges Scattering mechanisms $D_2 = H \cot \left(rac{\pi - (\phi - \phi')}{2n}
ight) F \left[k L^i a^- (\phi - \phi')
ight]$ Reflection Surface diffraction $D_3 = H \cot \left(rac{\pi + (\phi + \phi')}{2n}
ight) F \left[k L^{rn} a^+ (\phi + \phi')
ight]$ $D_4 = H \cot \left(rac{\pi - (\phi + \phi')}{2n}
ight) F \left[k L^{ro} a^- (\phi + \phi')
ight]$

Propagation Physics – Wedge Diffraction

Propagation Physics - Total E-Field

Materials Database

- Electromagnetic properties of materials
 - □ Complex electric permittivity
 - Complex magnetic permeability
 - □ Covering a wide frequency range
- Materials applied to terrain, buildings, platforms
- Materials for different use cases
 - Building materials for urban propagation
 - □ RAM coatings for airframes
- Environmental material such as water and snow

Dielectric permittivity of water as a function of frequency for the temperature 0–100 °C.: Here and in further figures, solid lines correspond to the real part, dashed lines to the imaginary part.

Antenna Database

Platform and Geographic Database

Environmental Data and Modeling

Demo

For more questions, please contact

Emma Morgenstern emorgenstern@alionscience.com or

Jenn Super jsuper@alionscience.com

For more information, please contact

Emma Morgenstern emorgenstern@alionscience.com or

Jenn Super jsuper@alionscience.com

Back Up Slides

BACK

Interference Avoidance Analysis

1111

$$\begin{split} \widehat{F}'(Q) &= \widehat{E}'(Q) \cdot \mathbf{R} \sqrt{\frac{p_1' p_2'}{(p_1' + s)(p_2' + s)}} e^{-jks} & \frac{1}{p_1'} = \frac{1}{2} \left(\frac{1}{p_1'} + \frac{1}{f_1}\right) \\ \frac{1}{p_2'} = \frac{1}{2} \left(\frac{1}{p_1'} + \frac{1}{f_2}\right) \\ \frac{1}{f_{12}} &= \left(\frac{\theta_{12}^{h} + \theta_{23}^{h}}{R_1} + \frac{\theta_{13}^{h} + \theta_{23}^{h}}{R_2}\right) \\ &+ \frac{1}{2} \left\{ \left(\frac{1}{p_1'} - \frac{1}{p_2'}\right)^2 + \frac{4\cos\theta}{\theta^{2\prime}} \left(\frac{1}{p_1'} - \frac{1}{p_2'}\right) \left(\frac{\theta_{22} - \theta_{22}^{h} + \theta_{23}^{h} + \theta_{23}^{h}}{R_1}\right) + \frac{4\cos^2\theta}{\theta^{2\prime}} \left[\left(\frac{\theta_{12}^{h} + \theta_{23}^{h}}{R_1} + \frac{\theta_{23}^{h} + \theta_{33}^{h}}{R_2}\right) - \frac{4\theta_{12}^{h^2}}{R_1 R_2}\right] \right\}^{1/2} \\ &= \widehat{E}_d(Q_s) \cdot D\sqrt{\frac{p}{s(p+s)}} e^{-jks} & \frac{1}{p} = \frac{1}{p_1'} - \frac{n_{s'} \cdot (s' - \theta)}{r_1 \sin^2 \beta_0} \\ &L_{Total} = L_{FS} - C_T - G_R & L_{FS} = 20\log_1(\frac{\lambda}{4\pi\tau}) = -20\log_1(2k\tau) & \widehat{E}(\pi) = jk \frac{e^{jkr}}{4\pi\tau} (Z_n N - k \times \overline{L}) \\ &P_R = \frac{1}{10P_{R/T}} |\widehat{E}_T(\theta, \phi) \cdot \widehat{N}_k(\theta, \phi)|^2 & \widehat{N} = \int_S \overline{J}(\overline{\gamma}^2) e^{\beta \cdot \overline{\gamma}} dS' \\ &L = \int_{\mathbb{Z}} K(\overline{\gamma}^2) e^{\beta \cdot \overline{\gamma}} dS' \end{split}$$