

Using 222-nm Ultraviolet (UV) Light for Continuous Disinfection DSIAC Webinar Briefing

coorob 8 Toobo

Part 1 – 222 nm Technology

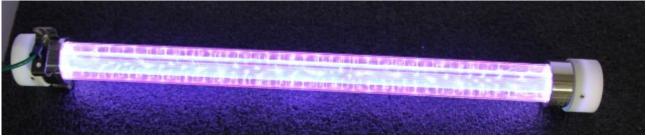
Source: Boeing nonproprietary

Source: Boeing nonproprietary

Q1-2021

Jamie Childress Technical Fellow jamie.childress@boeing.com (253) 657-6215 Boeing Research and Technology

Copyright ©2021 Boeing. All rights reserved

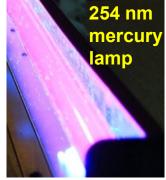

222-nm UV - Bottom Line, Up Front

Boeing Research & Technology

- The 222-nm UV is **both safer and more effective** than longer wavelength mercury lamps and LEDs.
- This allows continuous disinfection in occupied areas.
 - Not possible with older UV systems.

Why?

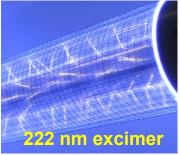
- The 222-nm UV is safer and more effective because it is highly absorbed by **both protein and DNA**.
- Longer wavelength UV is not strongly absorbed by protein.



Source: Boeing nonproprietary

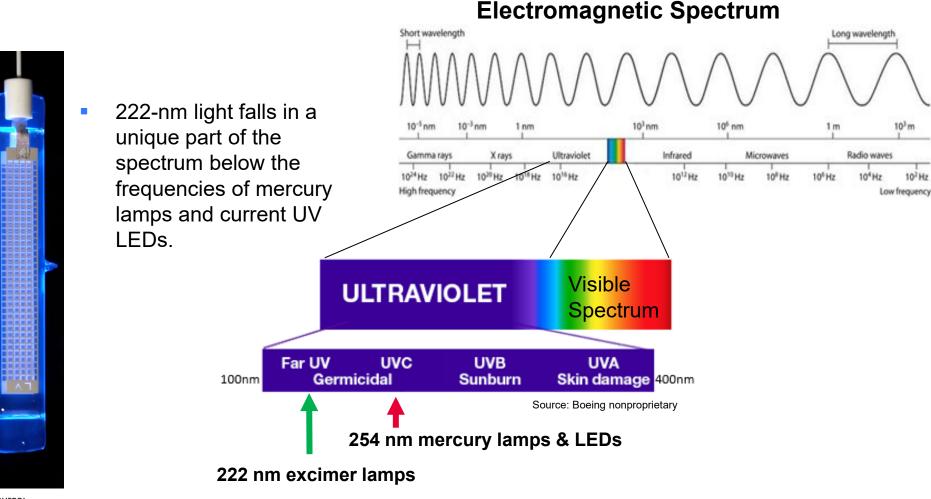
A Very Brief History of UV Disinfection

Boeing Research & Technology


- The germicidal properties of UV light have been known since the 1930s.
- Early UV disinfection and the majority of UV disinfection today are done with mercury vapor lamps, which have strong emissions at 254 nm.
- In recent years, LEDs that emit at useful germicidal frequencies between 260 and 280 nm have gone into mass production.
- Recently, a new type of UV disinfection technology has emerged using excimer lamps that emit at 222 nm.
 - This 222 nm technology is game changing.

Source: Wikimedia commons

Source: Boeing nonproprietary

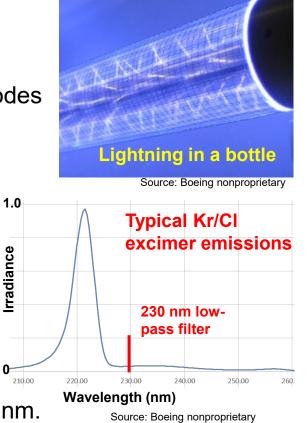


Source: Boeing nonproprietary

Copyright ©2021 Boeing. All rights reserved

UV Light Spectrum

Boeing Research & Technology



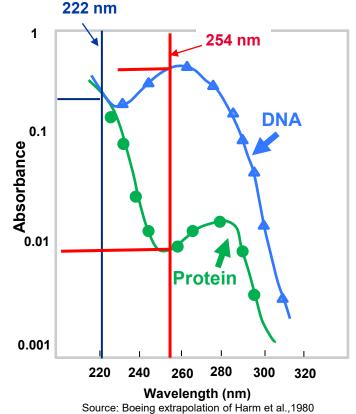
Source: Boeing nonproprietary

222 nm Excimer Lamps

Boeing Research & Technology

- An excimer lamp is a glass bottle filled with gas that has high-voltage electrodes along its length.
- A high-voltage discharge between inner and outer electrodes creates a "temporary" molecule that rapidly decays.
 - This "temporary" molecule decay creates the light.
 - The gas mixture determines the light frequency created by this molecular decay.
- Excimer lamps typically operate at thousands of volts and more than 10,000 Hz.
- Kr/Cl excimer (exciplex) lamps primarily emit light at 222 nm.
- 222-nm LEDs are in research, but none are in mass production.

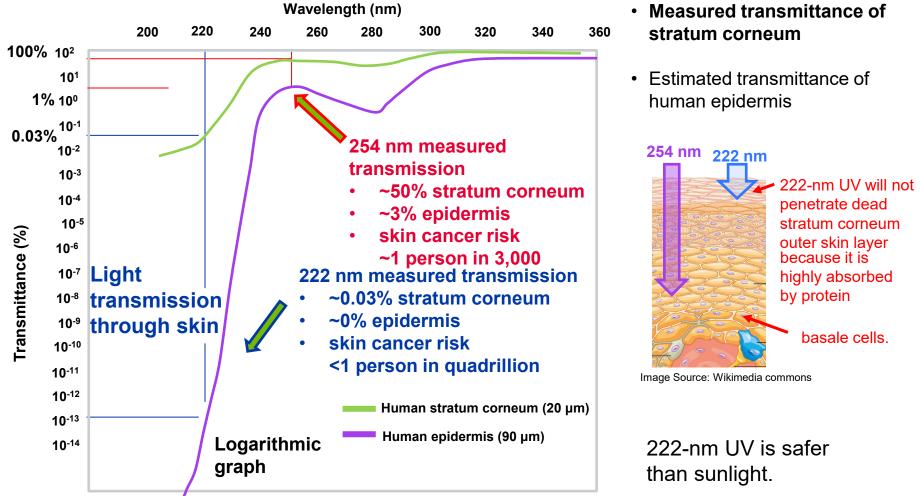
222 nm excimer



222-nm UV Is Absorbed by DNA and Protein.

Boeing Research & Technology

- 222-nm UV has unique properties and is NOT the same as mercury lamps or UV LEDs.
- 222-nm UV is highly absorbed by both protein bonds and DNA.
- This protein absorption makes 222-nm UV **safe** for human exposure.


- Mercury lamps and UV LEDs use UV-C between 250 and 280 nm.
- 250–280-nm UV has low absorption by protein.
- UV-C in the 250–280 nm range is **carcinogenic** and cannot be used on occupied areas.

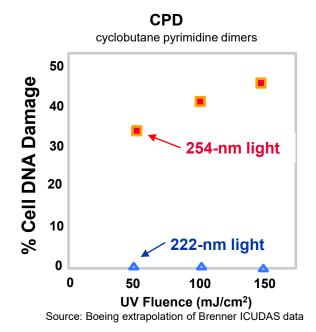
- Protein has **25 times** better absorption of 222 nm compared to 254 nm.
- DNA absorption is similar for both frequencies.

UV Transmittance of Mouse and Human Skin

Boeing Research & Technology

Source: Boeing extrapolation of C. Nisigori, ASP Symposium 2020 data

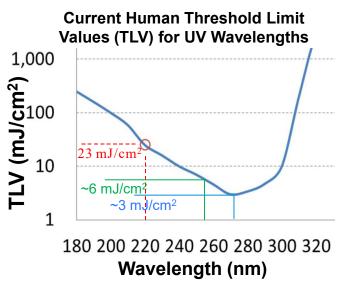
222 nm Safety Data


Boeing Research & Technology

٠

- Numerous 222 nm exposure studies conducted on both humans and animals support the raising of the human daily exposure limit (TLV) to over 500 mJ/cm².
 - Human and animal skin tests up to 1,000 mJ/cm², with no adverse effects.
 - Animal eye tests up to 600 mJ/cm², with no adverse effects.
 - Columbia/Brenner lifetime hairless mouse study
 - Study completed 60-week mouse lifetime
 - Exposed 8 hours/day, 5 days a week to 500 mJ/cm²
 222 nm: no adverse effects detected
 - Post-mortem autopsies and pathology in process
 - Boeing working with Columbia
 - Multiple studies of DNA damage to mammalian cells show that 254-nm light causes increasing DNA damage in mammalian cells with increasing dosage, but 222-nm light does not.

Image Source: Wikimedia commons 600 mJ/cm² eye exposure

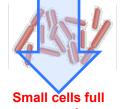


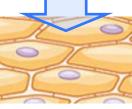
Current Exposure Guidelines

Boeing Research & Technology

- UV disinfection devices are regulated by the EPA as a pesticide device.
- No FDA-mandated UV exposure limit.
 - (unless used as part of medical device)
- Threshold Limit Value (TLV) is a guideline generally followed in industrial settings.
- The current 222 nm TLV value is based on old assumptions and does not include new safety data.
- Work is ongoing with regulators to increase the 222 nm limit to over 500 mJ/cm² based upon the new human and animal safety data.
- This will allow continuous disinfection in short time frames.

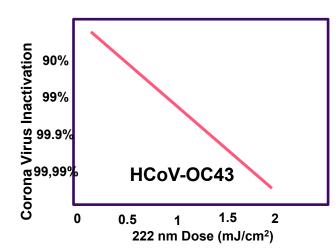
ACGIH (American Conference of Governmental Industrial Hygienists)

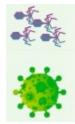

Source: Boeing extrapolation of ACGIH TLV data


222-nm UV Is Deadly to All Pathogens.

Boeing Research & Technology

If 222-nm UV is safer for humans, why does it kill pathogens?


- Because pathogen cells are tiny and human cells are large.
- 222-nm UV easily penetrates a few microns into protein.
- 222-nm UV fully penetrates small cells.
 - Human cells are about 40 µm in diameter.
 - Not fully penetrated by 222-nm UV
 - Bacteria & virus are less than 1 μm in diameter.
 - Full penetration of bacteria and virus
 - Destroys bacterial and virus cell walls and DNA.


mall cells full Large cells partial penetration penetration Image Sources: Wikimedia commons

Microbes are 10X smaller than human cells and are fully penetrated by far UV.

Source: Boeing extrapolation of Brenner ICUDAS data

Viruses and Bacteria Smaller Than Human Cells

Virus 100 nm

Bacteria 1 µm

Plant & Animal Cells 15–80 µm

Image Sources: Wikimedia commons

Copyright ©2021 Boeing. All rights reserved

222-nm UV Is Very Effective for Coronavirus.

Boeing Research & Technology

- Coronaviruses are mostly protein.
- Coronaviruses are very small, ~0.1 μm.
- Fully penetrated and rapidly destroyed by 222-nm UV.

SARS-CoV-2 coronavirus

- Required UV dose for 99.9% surface disinfection
 - 254 nm: ~6.5 mJ/cm²
 - 222 nm: ~3 mJ/cm² (222 is twice as effective)
- Required UV dose for 90% surface disinfection
 - 222 nm: ~1 mJ/cm²

HCoV-229E coronavirus

- Required UV dose for 99% airborne disinfection
 - 222 nm: 1.1 mJ/cm²
- Required UV dose for 90% **airborne** disinfection
 - 222 nm: 0.56 mJ/cm²

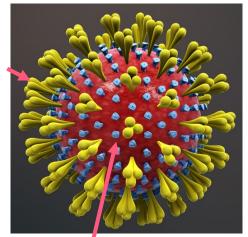
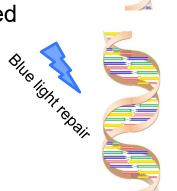


Image Source: Wikimedia commons


Envelope and membrane proteins

Spike protein

222-nm UV Is NOT Subject to Photoreactivation.

Boeing Research & Technology

- Both 222-nm UV and 250–300-nm UV damage the DNA of the targeted pathogen, which **inactivates** the pathogen's ability to replicate.
- Photoreactivation is a repair mechanism pathogens can use to repair themselves after their DNA is damaged by UV light.
- Many bacteria and some viruses have the photolyase gene that allows them to repair DNA using ordinary blue light.
- For some pathogens, 250–300-nm UV damaged DNA can be repaired in as little as a few hours' exposure to blue light (reactivating them).
- **222-nm UV is not subject to photoreactivation** since both DNA and the cell wall are destroyed.
 - No reported photoreactivation of 222 nm inactivated microbes.

IT dannade

Image Source: Wikimedia commons

Applications of 222 nm Technology

Boeing Research & Technology

- 222 nm technology is the preferred system when disinfecting occupied areas.
 - Allows continuous disinfection in occupied areas
 - Highly effective
 - Optical power can be dialed up or down as needed

Examples:

- Rapid disinfection
 - High power mobile 222 nm wand
- Automated periodic UV disinfection
 - Boeing clean lavatory
- Persistent UV disinfection
 - Continuous disinfection of occupied areas

Source: Boeing nonproprietary

Copyright © 2012 Boeing. All rights reserved

Part 2 – 222-nm Disinfection Lighting

DSIAC Briefing DoD Applications and Installations of Continuous 222-nm Disinfection Lighting

PJ Piper CEO Far UV Technologies, Inc. pipiper@faruv.com (917) 885-8516

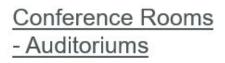
March 2021

UNCLASSIFIED

Current Applications of the 222-nm Disinfection Lighting

Far UV Technologies

222nm disinfection lighting is best utilized in higher traffic – higher risk areas. Respiratory diseases are spread through the air and/or on surfaces as viruses and/or bacteria are introduced to an environment when an infected person breathes, talks, coughs, sneezes or sings. Higher risk DOD facilities and vehicles include but are not limited to:



Current Applications of the 222-nm Disinfection Lighting

Far UV Technologies

Visitor Centers

Offices - Elevators

Recreational Areas

<u>Healthcare</u>

Schools

Other Civilian Applications Elderly Care Day Care Restaurants/Retail

Ferries/Cruise Ships Trains City Halls

Museums Theaters Hotels - Casinos

