

Emerging Applications for Ionic and Electric Energetic Materials

Wayne Sawka, Ph.D. Founder and CEO DSSP Inc. Reno, NV <u>wsawka@dssptech.com</u>

NOT A PRODUCT OF THE UNITED STATES GOVERNMENT. ALL RIGHTS RESERVED BY THE AUTHOR

Ionic Energetics Are Arguably "Safer and Greener"

Ionic Liquid Propellant Toxicity vs. Hydrazine

- Not a carcinogen
- No vapor pressure
- Not a mutagen
- Nontoxic combustion
- Nontoxic thermal decomposition products: international studies

Ionic Propellant Toxicity vs. Conventional

- **NO** perchlorates, nitroglycerine, or other legacy bad actors
- NO groundwater or disposal issues

Fahrat Kamal, Batonneau Yann, Brahmi Rachid and Kappenstein Charles (2011). Application of Ionic Liquids to Space Propulsion, Applications of Ionic Liquids in Science and Technology, Prof. Scatt Handy (Ed.), ISBN: 978-953-307-605-8, InTech, Available from: http://www.intechopen.com/books/applications-of-ionic-liquids-inscience-and-technology/application-of-ionic-liquids-to-spacearrouslion

HAN Brief History

Liquid Gun Propellant -

Picatinny, XM-46, LGP-1846, 70's to 2002 NOS-365 (Navy)

Crusader, 155mm Artillery

HAN/LGP1846 production,

Picatinny, ATK Elkton, SACHEM, Olin, and Arch commodity studies

Emulsion Technology – Aerojet

"A3L", refocused IR&D, Aerojet & AFRL EAFB 90's **AF-M315E**– AFRL Edwards 90's onwards **First ELECTRIC propellants-** 1995-2005 Aerojet alumni Art Katzakian and Charlie Criv

Aerojet alumni Art Katzakian and Charlie Grix First ELECTRIC propellants

ESP and GEM- DSSP 2005 onwards IQT, Moog and Shell GameChanger funding SBIRs: Navy, Air Force, MDA, NASA, DARPA, and Army

http://www.armytechnology.com/projects/crusader/crusade r5.html

Electrical Propellant Ionic Liquid Oxidizer

HAN Liquid Semicrystalline Behavior

Fig. 2-1. A Sample LP XM46 Structure Showing the HAN-TEAN Cluster Surrounded by Water

<u>Stabilizers</u>: phosphates <u>Buffers</u>: (hydroxyl) amines, borates

Sequestrants: chelating agents for transition metals such as Fe⁺⁺, Fe⁺⁺⁺, such as 2,2'dipyridyl

Note also that significant USAF development efforts are ongoing with the HAN-based monopropellant, AF-M315E (Hawkins et al., 2010).

Plastisol Binder (Fuel)

- (Poly)vinyl alcohol, PVA
 - High molecular weight
 - High degree of crystallinity
 - Purity, particle size, PSD, important

- "Cure" plastisol based, no isocyanate chemistry
 - Similar to double-base propellant manufacturing
- Conventional characteristics: cast/pour, "cure"
- "Out-of-the-box" characteristics
 - Pyroelectric phenomenon: response to electrical input signals as function of temperature and pressure
 - Electrically ignitable and throttleable

Pyroelectric Behavior

Pyroelectric sensors

The side between electrical and thermal corners represents the pyroelectric effect and produces no kinetic energy. The side between kinetic and electrical corners represents the piezoelectric effect and produces no heat.

Basic Electric Solid Propellant On-Off Design

Burning

Post Burn

Electric Energetics

Electric: Ignition, Extinguishment, and Re-ignition

Complete extinguishment with no smolder

Solid state, no moving parts required for re-ignition

Solid and Liquid Ionic Energetics

Solid propellant/explosives: composed of HAN-based liquid oxidizer combined with dissolvable energetics, stabilizers, ballistic modifiers, etc., in a PVA polymer matrix.

Liquid monopropellant: family is a blend of HAN-based oxidizer with water and dissolved fuels, stabilizers, or additives for performance and safety.

• Solids

- HIPEP
 - Non-metallized, min.-smoke propellant
- HOT
 - High operating temperature (thermite-like)
- BADB
 - Boron reduced-smoke propellant
- HIPEX
 - Aluminized explosive
- Liquids
 - AF-M315e (Air Force/Edwards)
 - GEM

Ingredient	Purpose	Weight %
Hydroxylammonium Nitrate	Oxidizer	65-75%
Polyvinylalcohol polymer	Binder	15-25%
Ammonium Nitrate	Co-Oxidizer	3-5%
Ammonium Dihydrogen Phosphate	Buffer, Stabilizer	0.50%
2,2'-Bipyridyl	Stabilizer, Sequestrant	0.50%
Proprietary Soluble Stabilizers	Stabilizer, Gas Generant	0.50%
Water	Desensitizer	0.5-2.5%

Generic HIPEP MSP Formulation

High-Performance Electric Propellant

General Characteristics: HIPEP

- Typical onset temperature by DSC is 175-180 °C (347-356 °F)
- Propulsion performance:
 - 230-245 s Isp Chemical
 - 1000 s Isp Arcjet
- Flame temp.: ~2650 K (2377 °C/4310 °F)
- Baseline HIPEP extremely flame insensitive at 1 atm.
 - It chars during flame impingement; with flame removal, it extinguishes.
- Sustained combustion occurs at around 2-300 psi
- High electrical conductivity
- Response to electrical power
 - On/off control with electrical power input
- Low hazards/low toxicity
- Throttles
 - Burning rate adjustable via power input

HIPEP Hazard Properties

- Flame insensitive, 1 atm
- Electrostatic discharge
 - Negative at highest setting of 0.25 J
- Impact ERL
 - Negative at highest setting of 158.5 cm (RDX is 29.8 cm)
- ABL friction
 - Negative at highest setting of 8000 N (RDX is 1870 N)
- Test at 0 cards
 - Negative
- Bullet impact test (.30 cal)
 - No reaction

Non-Metalized Burn Rates

Baseline HIPEP Propellant

HIPEP501 Burn Rates up to 10,000 psi

- Exponent breaks at 900 psi and around 2000 psi.
- Low-pressure burning characterized by dark zone and flame standoff (partial cause of high exponent).
- Mid-range low slope likely due to no flame standoff and essentially premixed flame.
- High-pressure burning dominated by another mechanism.

Propellant Electrical Properties

- Enhanced burning with electrical power
 - Three "knobs" to affect burn rate: pressure, temperature, and electrical power.
 - Can cause burning to occur at lower pressures and at higher rates.
 - Synergistic effects (burn rates up to 10x normal with electrical burning at high pressures).

Unpowered: no applied voltage or current Powered: ~250 V, 0.1 A → 600 V 3A

Pyroelectric Burning vs. Plasma Production

Chemical combustion smooth burning *Yellow Flame*

Vacuum high temperature plasma production *Purple Glow Discharge*

HIPEX: *Electrically Variable Explosive* (EVE)

- SBIR program
- Aluminized explosive (HIPEX) (20-25% Al)
- Safe Class 1.4C high explosive
- Must be electrically "charged" prior to detonation or <u>will not detonate</u>
 - Charging creates voids and allows for detonation
- Flame temp.: 3350-3500 K
- Better mechanical properties than HIPEP from filler reinforcement
- Damage-tolerant high explosive
- HIPEX Cheetah v8 predictions indicate high potential

HIPEX: *Electrically Variable Explosive*

Comparision of Predicted **Detonation Velocity**, with SOTA Baseline Formulations (Higher is better)

(Liquid) Monopropellants

Green Electric Monopropellant Development

- **AF-M315e** was developed by the Air Force beginning in the late 1980s.
 - Green hydrazine replacement propellant
- **GEM** was originally developed by DSSP in 2012 for oil/gas downhole use as a pumpable, low-velocity gas generator/propellant.

Video: GEM electrical ignition, approx. 50 msec duration Liquid Monopropellant Ignition and Combustion 10-mm Glass Vial High-Speed Video ~ 500 psi

GEM and AF-M315e Ignitions

- GEM and AF-M315e are both flame insensitive; HAN-based monopropellants can be ignited:
 - Thermally or
 - With a catalyst
- GEM can also be ignited:
 - Electrically
 - As a plasma/ion source
- It can be used either in chemical mode or electrical mode, providing for a chemical burn with high thrust or operating like a PPT with high specific impulse.

Droplet passing through an oxy-acetylene torch flame had no reaction.

Liquid pulsed-plasma thruster

Formulation

- S-HAN-5 precursor
- Ships as 1.4C, 30-kg cartons

Constituents	Weight Percent (%)
Hydroxylammonium Nitrate	80-95%
Ammonium Dihydrogen Phosphate	0-1%
Ammonium Nitrate	0-5%
2,2'-dipyridyl, 2,2'-bipyridyl	0-1%
Water	0-2%

Constituents	Weight Percent (%)
Hydroxylammonium Nitrate	65-75%
Ammonium Dihydrogen Phosphate	0-1%
Ammonium Nitrate	0-7%
5-Aminotetrazole	0-3%
2,2'-dipyridyl, 2,2'-bipyridyl	0-1%
Cycloamylose; polysaccharide	15-25%
Water	0-4%

S-HAN-5

GEM

Liquid Propellant Precursor (S-HAN-5)

Characteristics, Optimized for Propulsion

Metric	GEM Mod 3	NTO/Hydrazine (MR = 1.21)
Vacuum Specific Impulse (50:1 expansion, 300 psi)	283.0 s	331.3
Theoretical Density	1.575 g/cc	1.205 g/cc
Density-Specific Impulse	445.7 g*s/cc	399.2 g*s/cc
Vapor Pressure (kPa)	~0.003	5/101
Boiling Point, °F	>220	71/237
Toxicity	Very Low	High

124-T and pyrazole both add Isp and stability.

1,2,4-triazole and 1,2diazole (pyrazole) stabilize HAN, add performance, in GEM3

Goal	Parameter	AF-M315E	GEM Mod 3
Î	Theoretical Isp, sec	266	283
Î	Actual Density (measured), g/cc	1.46	1.505
Ţ	Dynamic Viscosity, centipoise	23	19
ſ	Ignition Delay (hot glass surface at 450°C), millisec	900	200
Î	Time to Fume-off at 150°C, hours	1.5	19
ſ	Carbon Content, wt%	7.65	7.39

GEM Ballistics and Water Content

- Ballistics and viscosity of GEM can be easily modified as required for different applications.
- Gelling the propellant is also done for certain applications.

Monopropellant Performance

Parameter	Hydrazine	AF-M315E	LMP103S	NOFBX	GEM MOD3
Description	Heritage monoprop	Air Force HAN-based monoprop	ADN-based monoprop	Nitrous oxide fuel blend (similar to NA-7)	DSSP HAN-based monoprop
DOT Hazard Classification	UN2029 (class 8 corrosive)	1.4C Energetic substance	1.4S (FHC) 1.3C substance	Detonable	1.4C Energetic substance
Theoretical I _{sp-vac} [sec] (p _c = 300psia, ε = 50)	236.8	261	252	320	284
Density [g/cc] @ 25°C	1.01	1.465	1.24	0.55	1.579
Density-I _{sp} [g-s/cc]	235.1	382.4	312.5	176	426
Boiling Point [°F]	236.3	>212	248	<70	>212
Freezing Point [°F]	35.6	<-7.5	-120 (ADN condensation @ 19.4)	-112	<-4
Vapor Pressure @ 25 °C kPa	1.91	1.4	15.09	5169	0.003 calculated
Toxicity	High	Very low*	Low	Low	Very low

Thermal Ignition of Ionic Monopropellants

• Hot plate testing was done with a drop of propellant dropped onto a heated glass slide, and ignition delay was measured at various temperatures.

Video: GEM Drop Tests 500 °C/932 °F GEM ~64 msec, AF-M315E ~625 msec

Catalyst Ignition Video

Performance

• Volumetric Isp

• Price point

EXAMPLE USES

1st HAN Propellant Flown In-Space 2014

SpinSat

12 Universal Mounting Systems (UMS) 6 Thrusters per UMS Total 72 Thrusters on SpinSat

Metric	Value
Impulse Bit (early life, ~10 pulses)	0.35 mN*s
Impulse Bit (midlife, ~100 pulses)	0.4 mN*s
Impulse Bit (late life, ~250 pulse)	0.45 mN*s
Specific Impulse (lifetime averaged)	300 s
Total Impulse per Thruster	0.15 N*s
Pulse to Pulse Variability	5-10%

Reference - <u>http://www.spaceflight101.com/spinsat.html</u>

Next In-Space 2019

NASA's Green Propellant Infusion Mission: GPIM Led by Ball Aerospace, with Aerojet developed AF-M315e thrusters.

Application Precision ACS

Metric

Pitch, Yaw Thrust Roll Torque Total Rotational Energy Minimum Impulse Bit Response Time Flight Mass Operating Frequency Envelope Power Draw Thrust Variability Service Lifetime Max Operating Pressure

Step Thruster Layer (32 thrusters

Electric Solid Microthrusters Test Data

Peak capability, 1.8 N/0.41 lbf Peak capability, 0.26 N*m/2.25 lbf 247.6 in*lb*s / 28.0 J*s Dithers can fire ~0.1 mN*s Dithers respond in ~1 ms First prototype 3.5 lb / 1.59 kg (2015) System produces a MIB every .05s Fits inside envelope Maximum power draw is 1.6 kW <10% on final batch 13 years proven, >20 yr. expected 0.05 torr (200,000 feet alt.)

Thermobaric Explosive

Liquid monopropellant explosives allow incompatible materials to be combined to modify shock waves.

T=0 *GEM Detonation*

T=+10ms *Mg ignition*

T=+20 ms

T=+30ms Mg burn out

Enhanced Oil Recovery and Waterless Fracking

- SBIR commercialization
- First liquid propellant in the oil industry.
 - Pumpable and injectable
 - Burn propagation in fractures of <70 microns (human hair)
- Development focus
 - Well stimulation tool
 - Propellant-enhanced shaped charges

Oil tool above ground test, shaped charges fire following by GEM ignition.

Liquid Avalanche Explosives

GEM has slow shock wave for heaving wet "maritime" snow.

GEM is Class 1.4c requiring less magazine storage setback acreage than currently used Class 1.1 explosives.

Measured Overpressure

at Radius (kPa)		
Blast at surface	3m	6m
Emulsion	25.5	6.5
Liquid GEM	31.7	13.1
Gelled GEM	31.7	13.1

	Vertical Shockwave Speed (ft/s)	Horizontal Shockwave Speed (ft/s)
Emulsion	1331	1595
GEM	1392	1550
Gelled GEM	1690	1641

Snow Pit Dimensions				
Blast Surface	Width (m)	Depth (m)		
Emulsion	0.81	0.53		
Liquid GEM	1.07	0.53		
Gelled GEM	1.07	0.53		
Blast 0.45m				
below surface	Width (m)	Depth (m)		
Emulsion	1.88	1.02		
Liquid GEM	2.49	1.35		
Gelled GEM	2.62	0.94		

Muzzle Flash Simulation

Army SBIR contract Replace blank rounds and battlefield with "non-pyrotechnics"

Better

Realistic-IR Multi-fire

Safer

Minimal injury risk

Green

No Pb contamination from primers

Faster

No policing empty shell casings after training No magazine storage/tracking required 400x less material handling

SBIR Commercialization

Live entertainment, theme parks, concerts, weddings, etc.

Thank You

•