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Reinforcement Learning (RL) Control of Swarms: Overview
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Reinforcement Learning (RL) Control of Swarms: Overview
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Swarm Objective Problem
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Reinforcement Learning (RL) Control of Swarms: Overview

J = /Ooo O(x(t), u(t))dt  w*(t)=min J

Swarm Objective Problem
N ui(t) + ug, (1)
J=) Ji+J, O
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Reinforcement Learning (RL) based Optimal Control

Optimal Control Problem (LQR)

e System: & = Ax + Bu

Linear state feedback controller

e Cost functional: J = / (xTQ:E + uTRu) dt
0

e Control law that minimizes the value of the cost: ©w = —Kx

x* K=R'BTP

x* ATP4+ PA—-PBR'BTP+Q =0 Algebraic matrix Riccati equation
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Reinforcement Learning (RL) based Optimal Control
Optimal Control Problem

e System: & = Ax + Bu

e Cost functional: J = / (xTQ:L‘ + uTRu) dt
0

e Control law that minimizes the value of the cost: ©w = —Kx

RL learns K by solving the
Riccati equation using only x(t)
and u(t), no model

x* K =R 'BTP
x* ATP4+ PA—-PBR'BTP+Q =0

4 )

Unknown system dynamics System response to control
A & B are unknown > input is unknown
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Reinforcement Learning (RL) based Optimal Control

Optimal Control Problem

e System: & = Ax + Bu

e Cost functional: J = / (xTQ:E + uTRu) dt
0

e Control law that minimizes the value of the cost: ©w = —Kx

RL learns K by solving the
Riccati equation using only x(t)

_ p-1pT
x* K=R"B'P and u(t), no model

x* ATP4+ PA—-PBR'BTP+Q =0

Adaptive Dynamic Programing (A and B are unknown)

Jiang, Y. and Jiang, Z.P., 2012. Computational adaptive optimal control for continuous-time linear systems with completely unknown dynamics. Automatica, 48(10), pp.2699-2704.
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Reinforcement Learning (RL) based Optimal Control

Adaptive Dynamic Programing (A and B are unknown)

Jiang, Y. and Jiang, Z.P., 2012. Computational adaptive optimal control for continuous-time linear systems with completely unknown dynamics. Automatica, 48(10), pp.2699-2704.
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Reinforcement Learning (RL) based Optimal Control

Adaptive Dynamic Programing (A and B are unknown)

-

-

Naively applying existing ADP
algorithm requires treating
the entire large-scale MAS as
a single system

~N

J

Jiang, Y. and Jiang, Z.P., 2012. Computational adaptive optimal control for continuous-time linear systems with completely unknown dynamics. Automatica, 48(10), pp.2699-2704.

Unrealistic
communication and
computational overhead
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Hierarchical RL for Multi-Agent Systems: Formulation

Can’t solve since model is unknown!

Naively applying existing ADP algorithm requires treating
the entire large-scale MAS as a single system
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Hierarchical RL for Multi-Agent Systems: Formulation

No physical (dynamical) coupling ]
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Hierarchical RL for Multi-Agent Systems: Formulation

6
L

Coupled control objective
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Hierarchical RL for Multi-Agent Systems: Formulation
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Approximate Control for Multi-Agent Systems

Individual agents or teams can solve for local optimal controllers in parallel
using existing ADP algorithms

21



Approximate Control for Multi-Agent Systems



Approximate Control for Multi-Agent Systems

C R is selected so that PBRB'™P =L, ® Q )

[ J
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Approximate Control for Multi-Agent Systems

Q' =Q+PBRBTP
R'=R'+R

We are relaxing control penalty term to account for coupled state penalty term
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Approximate Control for Multi-Agent Systems: Algorithm

Step 1: Solve in
parallel using ADP

\

Step 2: Construct f%

—

Step 3: Compute K
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Comparison between Centralized RL and HRL

Heterogeneous Agents

N
N: # of teams (cliques)
c: # of agents per team
[ N=3&c=3 ] n: size of state-vector
m: size of input-vector

Bai, H., George, J. and Chakrabortty, A., “Hierarchical Control of Multi-Agent Systems using Online
Reinforcement Learning,” American Control Conference (ACC), Denver, CO, July 2020
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Reducing Learning Time via Hierarchical Approximation
Homogeneous Agents

Final controller is optimal !
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Comparison between Centralized RL and HRL

Homogeneous Agents

Similarity transformation allows to decouple the problem.

Final controller is optimal !

Comparisons Between Different Algorithms

p RL HRL C-HRL

C-HRL: Apply a customized HRL algorithm to decomposed problems
** . Computational time is longer than 60s

G. Jing, H. Bai, J. George and A. Chakrabortty, “Decomposability and Parallel Computation of Multi-Agent LQR”, in
FrAl2 Regular Session (11:15-11:30) American Control Conference, to appear, 2021.
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HRL Example: Formation Control of Multiple Groups

Desired

/ formation

Initial agent
positions

‘\ Target

positions



HRL Example: Formation Control of Multiple Groups

Heterogeneous Agents



Simulation results:

Trajectories of agents under optimal and approximated optimal controllers. Targets
are denoted by +’s. Different colors indicate different groups.



Simulation results:

Trajectories of agents under optimal and approximated optimal controllers. Targets
are denoted by +’s. Different colors indicate different groups.



Outline

34



Decomposition
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Decomposition Strategies

number of pairs of agents that do not

need to communicate with each other.
2 3 4 6 7 9

Ay NS S N

Graph G with 3 cliques, each clique contains 3 agents.

(J—J*)/J*

Jing, et al. Model-Free
Optimal Control of Linear
Multi-Agent Systems via
Decomposition and
Hierarchical Approximation

IEEE TCNS, 2021.
36



Multi-Agent Formation Maneuver Control

@: leaders
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Multi-Agent Formation Maneuver Control

Optimal (centralized, complete J=1112.64 & .J, = 359.11
communication graph)

wi=— Y (¢ —q — (hi —hy)) = k(g — hs)
Non-optimal (4,5)€E.
(distributed, stable) J=2011.21 & J, = 945.56



Simulation results: HRL
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Decomposition Performance Indices
N1 N Nj k  tr(Ga2) cond(P) cond(@) J Ju ne.  Time(sec) SOP

(@ o6 3 3 18 12 248.77647 46.1346 1259.7985  426.9677 48 0.9248 0.82%
(b) 1 10 1 1 8 339.4430 83.7524 1347.0390  431.6374 65 13.9719 7.96%
7 2 3 0 12 285.1161 55.3510 1267.77974  442.4165 66 2.1165 1.61%
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Microsoft AirSim (Aerial Informatics and Robotics Simulation)

An open-source, cross platform simulator for drones, ground vehicles such
as cars and various other objects, built on Epic Games’ Unreal Engine 4 as a
platform for Al research.

https://microsoft.github.io/AirSim/
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AirSim Simulation — 2 Teams

 Trajectory: Minimum Snap (compute @ 10 Hz)

» Position Control: LQR (compute @ 20 Hz, update gains @ 10 Hz)
 Formation:

 (Circle of radius 4
10 meters above target



AirSim Simulation — Tracking & Formation Control



Conclusions
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