UNCLASSIFIED

U.S. ARMY COMBAT CAPABILITIES DEVELOPMENT COMMAND – ARMY RESEARCH LABORATORY

Large-Scale, Multi-Agent, Reinforcement Learning Control

Jemin George, Ph.D.

Computational & Information Sciences Directorate (CISD)

Army Research Laboratory (ARL)

DISTRIBUTION STATEMENT A

Outline

 \Box Overview

 \Box Hierarchical Reinforcement Learning (HRL) Control

- RL Control (backgound)
- Problem Formulation
- $\circ\,$ Proposed HRL Solution
 - HRL for approximate control of heterogeneous swarm
 - HRL for optimal control of homogeneous swarm
- $\circ\,$ Example: Formation Control

 \Box Swarm Decomposition

- $\circ\,$ Decomposition Objectives
- Example: Formation Maneuver

 \Box AirSim Experiments

 \Box Conclusions

Linear Quadratic Regulator

$$J = \int_0^\infty \Phi(\boldsymbol{x}(t), \boldsymbol{u}(t)) dt \qquad \boldsymbol{u}^{\star}(t) = \min_{\boldsymbol{u}(t)} J$$

Swarm

Objective

Problem

Why is it difficult?

- Uncertainty
- Size

Reinforcement Learning Control \iff Adaptive Optimal Control

- Adaptive: unknown/uncertain dynamics and environment 0
- \circ Optimal: min J $\boldsymbol{u}(t)$

 \Box Reinforcement Learning Control \iff Adaptive Optimal Control

- Adaptive: unknown/uncertain dynamics and environment
- Optimal: $\min_{\boldsymbol{u}(t)} J$

Outline

 \Box Overview

 \Box Hierarchical Reinforcement Learning (HRL) Control

- RL Control (backgound)
- Problem Formulation
- $\circ~$ Proposed HRL Solution
 - HRL for approximate control of heterogeneous swarm
 - HRL for optimal control of homogeneous swarm
- $\circ\,$ Example: Formation Control

 \Box Swarm Decomposition

- Decomposition Objectives
- Example: Formation Maneuver

 \Box AirSim Experiments

Reinforcement Learning (RL) based Optimal Control

Optimal Control Problem (LQR)

- System: $\dot{x} = Ax + Bu$
- Cost functional: $J = \int_0^\infty (x^T Q x + u^T R u) dt$

- Control law that minimizes the value of the cost: u = -Kx
 - $\star K = R^{-1}B^T P$ $\star A^T P + PA - PBR^{-1}B^T P + Q = 0 \longleftarrow$

Algebraic matrix Riccati equation

Body-Rate Controller

Disturbance-Rejection Comparison

Reinforcement Learning (RL) based Optimal Control Optimal Control Problem

- System: $\dot{x} = Ax + Bu$
- Cost functional: $J = \int_0^\infty (x^T Q x + u^T R u) dt$
- Control law that minimizes the value of the cost: u = -Kx
 - $\star K = R^{-1}B^T P$ $\star A^T P + PA - PBR^{-1}B^T P + Q = 0$

RL learns K by solving the Riccati equation using only x(t)and u(t), no model

Unknown system dynamics A & B are unknown

System response to control input is unknown

Reinforcement Learning (RL) based Optimal Control Optimal Control Problem

- -
 - System: $\dot{x} = Ax + Bu$
 - Cost functional: $J = \int_0^\infty (x^T Q x + u^T R u) dt$
 - Control law that minimizes the value of the cost: u = -Kx
 - $\star K = R^{-1}B^T P$ $\star A^T P + PA - PBR^{-1}B^T P + Q = 0$

Adaptive Dynamic Programing (A and B are unknown)

RL learns K by solving the Riccati equation using only x(t)and u(t), no model

Reinforcement Learning (RL) based Optimal Control

Adaptive Dynamic Programing (A and B are unknown)

Jiang, Y. and Jiang, Z.P., 2012. Computational adaptive optimal control for continuous-time linear systems with completely unknown dynamics. Automatica, 48(10), pp.2699-2704.

Reinforcement Learning (RL) based Optimal Control

Adaptive Dynamic Programing (A and B are unknown)

Jiang, Y. and Jiang, Z.P., 2012. Computational adaptive optimal control for continuous-time linear systems with completely unknown dynamics. Automatica, 48(10), pp.2699-2704.

Outline

 \Box Overview

 \Box Hierarchical Reinforcement Learning (HRL) Control

- RL Control (backgound)
- $\circ~$ Problem Formulation
- $\circ~$ Proposed HRL Solution
 - HRL for approximate control of heterogeneous swarm
 - HRL for optimal control of homogeneous swarm
- $\circ\,$ Example: Formation Control

 \Box Swarm Decomposition

- Decomposition Objectives
- Example: Formation Maneuver

 \Box AirSim Experiments

• Swarm of p agents consisting of N groups: $p = \sum_{j=1}^{N} p_j$

• Group-level dynamics:

$$\mathbf{\dot{x}}_j = A_j \mathbf{x}_j + B_j \mathbf{u}_j$$

• Swarm model:

$$\dot{\mathbf{x}} = \mathcal{A}\mathbf{x} + \mathcal{B}\mathbf{u}$$

• Control objective:

$$J = \int_0^\infty \mathbf{x}^\top Q \mathbf{x} + \mathbf{u}^\top R \mathbf{u} \, dt$$

• Optimal controller:

$$\mathbf{u} = -K^* \mathbf{x} = -R^{-1} \mathcal{B}^\top P^* \mathbf{x}$$

• Riccati equation

$$P^*\mathcal{A} + \mathcal{A}^\top P^* + Q - P^*\mathcal{B}R^{-1}\mathcal{B}^\top P^* = 0$$

Can't solve since model is unknown! Naively applying existing ADP algorithm requires treating the entire large-scale MAS as a single system

• Swarm of p agents consisting of N groups: $p = \sum_{j=1}^{N} p_j$

• Group-level dynamics:

• Swarm model:

- Optimal controller:

$$\mathbf{u} = -K^* \mathbf{x} = -R^{-1} \mathcal{B}^\top P^* \mathbf{x}$$

 $\dot{\mathbf{x}}_j = A_j \mathbf{x}_j + B_j \mathbf{u}_j \blacktriangleleft$

 $\dot{\mathbf{x}} = \mathcal{A}\mathbf{x} + \mathcal{B}\mathbf{u}$

• Riccati equation

$$P^*\mathcal{A} + \mathcal{A}^\top P^* + Q - P^*\mathcal{B}R^{-1}\mathcal{B}^\top P^* = 0$$

No physical (dynamical) coupling

• Swarm of p agents consisting of N groups: $p = \sum_{j=1}^{N} p_j$

• Group-level dynamics:

$$\mathbf{\dot{x}}_j = A_j \mathbf{x}_j + B_j \mathbf{u}_j$$

• Swarm model:

$$\dot{\mathbf{x}} = \mathcal{A}\mathbf{x} + \mathcal{B}\mathbf{u}$$

the cost function

18

A coupling graph is involved in the cost function

Outline

 \Box Overview

 \Box Hierarchical Reinforcement Learning (HRL) Control

- $\circ\,$ RL Control (backgound)
- Problem Formulation
- $\circ\,$ Proposed HRL Solution
 - HRL for approximate control of heterogeneous swarm
 - HRL for optimal control of homogeneous swarm
- $\circ\,$ Example: Formation Control

 \Box Swarm Decomposition

- Decomposition Objectives
- Example: Formation Maneuver

 \Box AirSim Experiments

• Control objective:

$$J = \int_{0}^{\infty} \mathbf{x}^{\top} Q \mathbf{x} + \mathbf{u}^{\top} R \mathbf{u} \, dt = \underbrace{\int_{0}^{\infty} \mathbf{x}^{\top} \bar{Q} \mathbf{x} + \mathbf{u}^{\top} R \mathbf{u} \, dt}_{\sum_{j=1}^{N} J_{j}} \underbrace{\int_{g}^{\infty} \mathbf{x}^{\top} \left(L_{w} \odot \tilde{Q} \right) \mathbf{x} \, dt}_{J_{g}}$$

$$J_{j} = \int_{0}^{\infty} \mathbf{x}_{j}^{\top} \bar{Q}_{j} \mathbf{x}_{j} + \mathbf{u}_{j}^{\top} R_{j} \mathbf{u}_{j} \, dt$$

$$I_{j} = -\underbrace{R_{j}^{-1} B_{j}^{\top} P_{j}}_{K_{j}} \mathbf{x}_{j}, \text{ where } P_{j} \in \mathbb{R}^{np_{j} \times np_{j}} \text{ are from}$$

$$\underbrace{P_{j} A_{j} + A_{j}^{\top} P_{j} + \bar{Q}_{j} - P_{j} B_{j} R_{j}^{-1} B_{j}^{\top} P_{j} = 0}_{J_{j} = \int_{0}^{\infty} \mathbf{x}_{j}^{\top} \bar{Q}_{j} \mathbf{x}_{j} + \mathbf{u}_{j}^{\top} R_{j} \mathbf{u}_{j} \, dt}$$

Individual agents or teams can solve for local optimal controllers in parallel using existing ADP algorithms

• Control objective:

$$J = \int_0^\infty \mathbf{x}^\top Q \mathbf{x} + \mathbf{u}^\top R \mathbf{u} \, dt = \underbrace{\int_0^\infty \mathbf{x}^\top \bar{Q} \mathbf{x} + \mathbf{u}^\top R \mathbf{u} \, dt}_{\sum_{j=1}^N J_j} + \underbrace{\int_0^\infty \mathbf{x}^\top \left(L_w \odot \tilde{Q} \right) \mathbf{x} \, dt}_{J_g}$$

$$J_j = \int_0^\infty \mathbf{x}_j^\top \bar{Q}_j \mathbf{x}_j + \mathbf{u}_j^\top R_j \mathbf{u}_j \, dt$$

•
$$\mathbf{u}_j = -\underbrace{R_j^{-1} B_j^\top P_j}_{K_j} \mathbf{x}_j$$
, where $P_j \in \mathbb{R}^{np_j \times np_j}$ are from

$$P_{j}A_{j} + A_{j}^{\top}P_{j} + \bar{Q}_{j} - P_{j}B_{j}R_{j}^{-1}B_{j}^{\top}P_{j} = 0$$

- Define $\mathcal{R}^{-1} = R^{-1} + \tilde{R}$
- Consider a new Ricatti equation

 $\mathcal{P}\mathcal{A} + \mathcal{A}^{\top}\mathcal{P} + Q - \mathcal{P}\mathcal{B}\mathcal{R}^{-1}\mathcal{B}^{\top}\mathcal{P} = \mathcal{P}\mathcal{A} + \mathcal{A}^{\top}\mathcal{P} + \bar{Q} - \mathcal{P}\mathcal{B}R^{-1}\mathcal{B}^{\top}\mathcal{P} + L_{w} \odot \tilde{Q} - \mathcal{P}\mathcal{B}\tilde{R}\mathcal{B}^{\top}\mathcal{P}$

• Control objective:

$$J = \int_0^\infty \mathbf{x}^\top Q \mathbf{x} + \mathbf{u}^\top R \mathbf{u} \, dt = \underbrace{\int_0^\infty \mathbf{x}^\top \bar{Q} \mathbf{x} + \mathbf{u}^\top R \mathbf{u} \, dt}_{\sum_{j=1}^N J_j} + \underbrace{\int_0^\infty \mathbf{x}^\top \left(L_w \odot \tilde{Q} \right) \mathbf{x} \, dt}_{J_g}$$

$$J_j = \int_0^\infty \mathbf{x}_j^\top \bar{Q}_j \mathbf{x}_j + \mathbf{u}_j^\top R_j \mathbf{u}_j \, dt$$

$$P_j A_j + A_j^\top P_j + \bar{Q}_j - P_j B_j R_j^{-1} B_j^\top P_j = 0$$

• Define $\mathcal{R}^{-1} = R^{-1} + \tilde{R}$

$$\tilde{R}$$
 is selected so that $\mathcal{P}\mathcal{B}\tilde{R}\mathcal{B}^{\top}\mathcal{P} = L_w \odot \tilde{Q}$

• Consider a new Ricatti equation

$$\mathcal{P}\mathcal{A} + \mathcal{A}^{\top}\mathcal{P} + Q - \mathcal{P}\mathcal{B}\mathcal{R}^{-1}\mathcal{B}^{\top}\mathcal{P} = \left(\mathcal{P}\mathcal{A} + \mathcal{A}^{\top}\mathcal{P} + \bar{Q} - \mathcal{P}\mathcal{B}\mathcal{R}^{-1}\mathcal{B}^{\top}\mathcal{P}\right) + \left(L_{w} \odot \tilde{Q} - \mathcal{P}\mathcal{B}\tilde{\mathcal{R}}\mathcal{B}^{\top}\mathcal{P}\right)$$

- Decoupled Ricatti equation with $\mathcal{P} = \text{diag}\{P_1, \ldots, P_N\}$

$$\mathcal{P}\mathcal{A} + \mathcal{A}^{\top}\mathcal{P} + \bar{Q} - \mathcal{P}\mathcal{B}R^{-1}\mathcal{B}^{\top}\mathcal{P} = \operatorname{diag}\{P_jA_j + A_j^{\top}P_j + \bar{Q}_j - P_jB_jR_j^{-1}B_j^{\top}P_j\} = 0$$

• Then the control gain follows as: $K = \mathcal{R}^{-1} \mathcal{B}^{\top} \mathcal{P} = \underbrace{\mathcal{R}^{-1} \mathcal{B}^{\top} \mathcal{P}}_{local} + \underbrace{\tilde{\mathcal{R}} \mathcal{B}^{\top} \mathcal{P}}_{global}.$

• Control objective:

$$J = \int_0^\infty \mathbf{x}^\top Q \mathbf{x} + \mathbf{u}^\top R \mathbf{u} \, dt = \underbrace{\int_0^\infty \mathbf{x}^\top \bar{Q} \mathbf{x} + \mathbf{u}^\top R \mathbf{u} \, dt}_{\sum_{j=1}^N J_j} + \underbrace{\int_0^\infty \mathbf{x}^\top \left(L_w \odot \tilde{Q} \right) \mathbf{x} \, dt}_{J_g}$$

$$J_j = \int_0^\infty \mathbf{x}_j^\top \bar{Q}_j \mathbf{x}_j + \mathbf{u}_j^\top R_j \mathbf{u}_j \, dt$$

$$P_j A_j + A_j^\top P_j + \bar{Q}_j - P_j B_j R_j^{-1} B_j^\top P_j = 0$$

- Let $\mathcal{P} = \operatorname{diag}\{P_1, \ldots, P_N\}$
- Define $\mathcal{R}^{-1} = R^{-1} + \tilde{R}$, where \tilde{R} is selected so that $\mathcal{P}\mathcal{B}\tilde{R}\mathcal{B}^{\top}\mathcal{P} = L_w \odot \tilde{Q}$
- Then the control gain follows as: $K = \mathcal{R}^{-1} \mathcal{B}^{\top} \mathcal{P} = \underbrace{\mathcal{R}^{-1} \mathcal{B}^{\top} \mathcal{P}}_{local} + \underbrace{\tilde{\mathcal{R}} \mathcal{B}^{\top} \mathcal{P}}_{global}$. - What we are effectively minimizing: $\mathcal{J} = \int_{0}^{\infty} \mathbf{x}^{\top} Q' \mathbf{x} + \mathbf{u}^{\top} \mathcal{R} \mathbf{u} \, dt,$ $\mathcal{I} = \int_{0}^{\infty} \mathbf{x}^{\top} Q' \mathbf{x} + \mathbf{u}^{\top} \mathcal{R} \mathbf{u} \, dt,$

We are relaxing control penalty term to account for coupled state penalty term

Approximate Control for Multi-Agent Systems: Algorithm

• Control objective:

$$J = \int_{0}^{\infty} \mathbf{x}^{\top} Q \mathbf{x} + \mathbf{u}^{\top} R \mathbf{u} \, dt = \underbrace{\int_{0}^{\infty} \mathbf{x}^{\top} \bar{Q} \mathbf{x} + \mathbf{u}^{\top} R \mathbf{u} \, dt}_{\sum_{j=1}^{N} J_{j}} + \underbrace{\int_{0}^{\infty} \mathbf{x}^{\top} \left(L_{w} \odot \tilde{Q} \right) \mathbf{x} \, dt}_{J_{g}}$$
Step 1: Solve in parallel using ADP
$$J_{j} = \int_{0}^{\infty} \mathbf{x}_{j}^{\top} \bar{Q}_{j} \mathbf{x}_{j} + \mathbf{u}_{j}^{\top} R_{j} \mathbf{u}_{j} \, dt$$

$$P_{j}A_{j} + A_{j}^{\top} P_{j} + \bar{Q}_{j} - P_{j}B_{j}R_{j}^{-1}B_{j}^{\top} P_{j} = 0$$
• Let $\mathcal{P} = \text{diag}\{P_{1}, \dots, P_{N}\}$
Step 2: Construct \tilde{R}
• Define $\mathcal{R}^{-1} = R^{-1} + \tilde{R}$, where \tilde{R} is selected so that $\mathcal{PB}\tilde{R}\mathcal{B}^{\top}\mathcal{P} = L_{w} \odot \tilde{Q}$
• Then the control gain follows as: $K = \mathcal{R}^{-1}\mathcal{B}^{\top}\mathcal{P} = \underbrace{R^{-1}\mathcal{B}^{\top}\mathcal{P}}_{local} + \underbrace{\tilde{R}\mathcal{B}^{\top}\mathcal{P}}_{global}$.
$$\mathcal{J} = \int_{0}^{\infty} \mathbf{x}^{\top} Q' \mathbf{x} + \mathbf{u}^{\top} \mathcal{R} \mathbf{u} \, dt,$$

Comparison between Centralized RL and HRL

Heterogeneous Agents

Graph \mathcal{G} with 3 cliques, each clique contains 3 agents.

Bai, H., George, J. and Chakrabortty, A., "*Hierarchical Control of Multi-Agent Systems using Online Reinforcement Learning*," **American Control Conference (ACC)**, Denver, CO, July 2020

Reducing Learning Time via Hierarchical Approximation Homogeneous Agents

- Identical agent dynamics: $\dot{x}_i = Ax_i + Bu_i, i = 1, \cdots, N$
- Identical performance metrics: $Q = (I_N + G) \otimes Q_0$, $R = I_N \otimes R_0$
- **Decompose** into solving N smaller-sized LQR problems

$$\min_{v_i} J_i(\xi_i, v_i) = \int_0^\infty (g_i \xi_i^\top Q_0 \xi_i + v_i^\top R_0 v_i) dt$$

s.t. $\dot{\xi}_i = A\xi_i + Bv_i.$

 \star g_i : eigenvalues of $I_N + G$

- $\star v_i^*$ learned using ADP with a smaller dimension (n)
- Combined optimal control: $u^* = \sum_{i=1}^N (S_i \otimes I_m) v_i^*$.
- "Learn in parallel, implement centrally"

Final controller is optimal !

Comparison between Centralized RL and HRL

Homogeneous Agents

Similarity transformation allows to decouple the problem.

Final controller is optimal !

Comparisons Between Different Algorithms

Dimension			Compu	Computational Time (s)			
\overline{p}	n	m	RL	HRL	C-HRL		
$5 \\ 3 \\ 3 \\ 5 \\ 50$	$egin{array}{c} 6 \\ 12 \\ 18 \\ 18 \\ 18 \\ 18 \end{array}$	$egin{array}{c} 4 \\ 8 \\ 12 \\ 12 \\ 12 \\ 12 \end{array}$	$0.8829 \\ 5.5812 \\ 43.9159 \\ ** \\ **$	$\begin{array}{c} 0.0863 \\ 0.1639 \\ 1.2854 \\ 2.1959 \\ 22.7517 \end{array}$	$\begin{array}{c} 0.0770\\ 0.1218\\ 0.8772\\ 1.5911\\ 16.5972\end{array}$		

C-HRL: Apply a customized HRL algorithm to decomposed problems ** : Computational time is longer than 60s

G. Jing, H. Bai, J. George and A. Chakrabortty, "Decomposability and Parallel Computation of Multi-Agent LQR", *in FrA12 Regular Session* (11:15-11:30) *American Control Conference*, to appear, 2021.

Outline

 \Box Overview

 \Box Hierarchical Reinforcement Learning (HRL) Control

- RL Control (backgound)
- Problem Formulation
- $\circ\,$ Proposed HRL Solution
 - HRL for approximate control of heterogeneous swarm
 - HRL for optimal control of homogeneous swarm

 $\circ\,$ Example: Formation Control

 \Box Swarm Decomposition

- $\circ\,$ Decomposition Objectives
- Example: Formation Maneuver

 \Box AirSim Experiments

HRL Example: Formation Control of Multiple Groups

HRL Example: Formation Control of Multiple Groups Heterogeneous Agents

- 2D robots: $M_i \ddot{q}_i + C_i \dot{q}_i = u_i, \quad i = 1, \cdots, N$
- Unknown M_i and C_i
- The robots are divided into 4 groups to track 4 different targets of known locations.

– Linear Quadratic Integral (LQI) approach

- Control objectives:
 - \star each group converges to a desired formation
 - \star its assigned target is at the center of the formation
 - \star keep the group centroid as close as possible

$$J_{j} = \int_{0}^{\infty} X_{j}^{\top} \bar{Q}_{j} X_{j} + \mathbf{u}_{j}^{\top} R_{j} \mathbf{u}_{j} dt \quad J_{g} = \int_{0}^{\infty} X^{\top} (L_{w} \otimes S^{\top} S) X dt$$
$$J = \sum_{j=1}^{s} J_{j} + J_{g} = \int_{0}^{\infty} X^{\top} (\bar{Q} + \tilde{Q}) X + \mathbf{u}^{\top} R \mathbf{u} dt$$

Simulation results:

Trajectories of the agents: solid lines -- optimal control; dash-dot lines: learned approximate control

Trajectories of agents under optimal and approximated optimal controllers. Targets are denoted by +'s. Different colors indicate different groups.

 $Q = 0.1 imes I + 0.5 imes \left(L_w \otimes \tilde{Q} \right)$

Simulation results:

Trajectories of the agents: solid lines -- optimal control; dash-dot lines: learned approximate control

Trajectories of agents under optimal and approximated optimal controllers. Targets are denoted by +'s. Different colors indicate different groups.

Outline

 \Box Overview

 \Box Hierarchical Reinforcement Learning (HRL) Control

- RL Control (backgound)
- Problem Formulation
- $\circ\,$ Proposed HRL Solution
 - HRL for approximate control of heterogeneous swarm
 - HRL for optimal control of homogeneous swarm
- $\circ\,$ Example: Formation Control

 $\Box\,$ Swarm Decomposition

- Decomposition Objectives
- Example: Formation Maneuver

 \Box AirSim Experiments

Decomposition

 $\square \text{ Recall } Q = \bar{Q} + L_w \otimes \tilde{Q}, \text{ where } \bar{Q} = \text{diag}\{\bar{Q}_{11}, \cdots, \bar{Q}_{NN}\}.$ $\square \text{ Decompose } L_w \text{ into } L_w = G_1 + G_2$

 $\circ G_1$: block diagonal Laplacian matrix with $s \leq N$ blocks

 \circ G₂: describes couplings between the groups

Decomposition Strategies

 \Box Given # of groups and L_w , find an optimal decomposition: challenging

 $\Box~$ Explored two approaches

- Reduce the optimality gap $J(x(0), u_h) J(x(0), u^*)$
 - An upper bound of the gap depends on $tr(G_2)$ & $cond(\mathcal{P})$
 - Minimizing $tr(G_2)$: k-cut graph partitioning problem
- $\circ~$ Limit required inter-agent communication links
 - maximize $\kappa = \sum_{i \approx j} N_i N_j$
 - mixed-integer quadratic program (MIQP)

number of pairs of agents that do not need to communicate with each other.

Graph \mathcal{G} with 3 cliques, each clique contains 3 agents.

Decomposition	κ	$\operatorname{tr}(G_2)$	$\operatorname{cond}(\mathcal{P})$	J	n_c	SOP $(J$
$\{1,2\},\{3,,7\},\{8,9\}$	4	8	16.4	15.9	32	23.57%
$\{1,2,3\},\{4,5,6\},\{7,8,9\}$	9	4	17.1	14.3	27	10.20%
$\{1,,3\},\{4\},\{5,,9\}$	15	6	17.0	15.8	21	22.15%
Undecomposed	n/a	n/a	n/a	12.9	36	0

COMPARISONS BETWEEN DIFFERENT DECOMPOSITIONS.

Jing, et al. Model-Free Optimal Control of Linear Multi-Agent Systems via Decomposition and Hierarchical Approximation EEE TCNS, 2021.

 $/J^*$

Multi-Agent Formation Maneuver Control

□ Agent dynamics: $M_i \ddot{q}_i + C_i \dot{q}_i = u_i$, i = 1, ..., N, (unknown M_i, C_i) □ Objective function

$$J_{1} = \int_{0}^{\infty} \sum_{(i,j)\in\mathcal{E}_{f}} ||q_{i} - q_{j} - (h_{i} - h_{j})||^{2} + \sum_{i\in\mathcal{L}} ||q_{i} - h_{i}||^{2} dt$$
$$J_{2} = \int_{0}^{\infty} \dot{q}^{\top} (L \otimes I_{2}) \dot{q} dt$$
$$J = J_{1} + J_{2} = \int_{0}^{\infty} \left[x^{\top} ((L + \Lambda) \otimes I_{4}) x + u^{\top} u \right] dt$$

Multi-Agent Formation Maneuver Control

Optimal (centralized, complete J = 1112.64 & $J_u = 359.11$ communication graph)

Simulation results: HRL

(a)

(b)

Outline

 \Box Overview

 \Box Hierarchical Reinforcement Learning (HRL) Control

- RL Control (backgound)
- Problem Formulation
- $\circ~$ Proposed HRL Solution
 - HRL for approximate control of heterogeneous swarm
 - HRL for optimal control of homogeneous swarm
- $\circ\,$ Example: Formation Control

 \Box Swarm Decomposition

- $\circ\,$ Decomposition Objectives
- Example: Formation Maneuver

 \Box AirSim Experiments

Microsoft AirSim (Aerial Informatics and Robotics Simulation)

An open-source, cross platform simulator for drones, ground vehicles such as cars and various other objects, built on Epic Games' Unreal Engine 4 as a platform for AI research.

https://microsoft.github.io/AirSim/

AirSim Simulation – 2 Teams

- Trajectory: Minimum Snap (compute @ 10 Hz)
- Position Control: LQR (compute @ 20 Hz, update gains @ 10 Hz)
- Formation:
- Circle of radius 4
- 10 meters above target

AirSim Simulation – Tracking & Formation Control

Conclusions

- Decomposition and hierarchical approximation can speed up reinforcement learning control of large-scale multi-agent systems (MAS).
- For heterogeous MAS,
 - Agents decomposed into groups & Control decomposed into a local control and a global control
 - Local control is learned (in parallel) and global control is approximated
 - Optimizing decompositions of the agents can reduce optimality gap and inter-agent communication.
- For homogeneous MAS, decomposition into N smaller, parallel problems leads to optimal control.
- Several options to decompose the large-scale MAS

Publications

- G. Jing, H. Bai, J. George and A. Chakrabortty, "Model-Free Optimal Control of Linear Multi-Agent Systems via Decomposition and Hierarchical Approximation," in IEEE Transactions on Control of Network Systems, doi: 10.1109/TCNS.2021.3074256.
- 2. G. Jing, H. Bai, J. George, A. Chakrabortty and P. K. Sharma, "Learning Distributed Stabilizing Controllers for Multi-Agent Systems," in IEEE Control Systems Letters, doi: 10.1109/LCSYS.2021.3072007.
- 3. G. Jing, H. Bai, J. George and A. Chakrabortty, "Model-Free Reinforcement Learning of Minimal-Cost Variance Control," IEEE Control Systems Letters, vol. 4, no. 4, pp. 916-921, 2020.
- 4. Bai, H., George, J. and Chakrabortty, A., "Hierarchical Control of Multi-Agent Systems using Online Reinforcement Learning," American Control Conference (ACC), Denver, CO, July 2020.
- 5. G. Jing, H. Bai, J. George and A. Chakrabortty, "Model-Free Optimal Control of Linear Multi-Agent Systems via Decomposition and Hierarchical Approximation," arXiv preprint, arXiv:2008.06604, Aug. 2020.
- 6. G. Jing, H. Bai, J. George and A. Chakrabortty, "Hierarchical Reinforcement Learning for Optimal Control of Linear Multi-Agent Systems: the Homogeneous case," submitted to American Control Conference (ACC), New Orleans, LA, July 2021.

Aranya Chakrabortty Gangshan Jing North Carolina State University

