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Swarm Objective Problem

Reinforcement Learning (RL) Control of Swarms: Overview 
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Swarm Objective Problem

Reinforcement Learning (RL) Control of Swarms: Overview 
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Swarm Objective Problem
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Swarm Objective Problem

Reinforcement Learning (RL) Control of Swarms: Overview 
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Reinforcement Learning (RL) based Optimal Control
Optimal Control Problem (LQR)
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Linear state feedback controller

Algebraic matrix Riccati equation



Reinforcement Learning (RL) based Optimal Control
Optimal Control Problem
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RL learns K by solving the 
Riccati equation using only x(t) 

and u(t), no model

System response to control 
input is unknown 

Unknown system dynamics 
A & B are unknown



Reinforcement Learning (RL) based Optimal Control
Optimal Control Problem
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RL learns K by solving the 
Riccati equation using only x(t) 

and u(t), no model

Adaptive Dynamic Programing (A and B are unknown)

Jiang, Y. and Jiang, Z.P., 2012. Computational adaptive optimal control for continuous-time linear systems with completely unknown dynamics. Automatica, 48(10), pp.2699-2704.



Adaptive Dynamic Programing (A and B are unknown)
Reinforcement Learning (RL) based Optimal Control

13
Jiang, Y. and Jiang, Z.P., 2012. Computational adaptive optimal control for continuous-time linear systems with completely unknown dynamics. Automatica, 48(10), pp.2699-2704.



Adaptive Dynamic Programing (A and B are unknown)
Reinforcement Learning (RL) based Optimal Control
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Jiang, Y. and Jiang, Z.P., 2012. Computational adaptive optimal control for continuous-time linear systems with completely unknown dynamics. Automatica, 48(10), pp.2699-2704.

System response to control 
input is unknown 

Naively applying existing ADP 
algorithm requires treating 

the entire large-scale MAS as 
a single system  

Unrealistic 
communication and 

computational overhead
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Hierarchical RL for Multi-Agent Systems: Formulation

Naively applying existing ADP algorithm requires treating 
the entire large-scale MAS as a single system  

Can’t solve since model is unknown!
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Hierarchical RL for Multi-Agent Systems: Formulation

No physical (dynamical) coupling 
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Hierarchical RL for Multi-Agent Systems: Formulation

Coupled control objective
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Hierarchical RL for Multi-Agent Systems: Formulation
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Approximate Control for Multi-Agent Systems

Individual agents or teams can solve for local optimal controllers in parallel 
using existing ADP algorithms 
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Approximate Control for Multi-Agent Systems



23

Approximate Control for Multi-Agent Systems
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Approximate Control for Multi-Agent Systems

We are relaxing control penalty term to account for coupled state penalty term
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Approximate Control for Multi-Agent Systems: Algorithm

Step 1: Solve in 
parallel using ADP

Step 2: Construct    . 

Step 3: Compute K
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Comparison between Centralized RL and HRL
Heterogeneous Agents

Bai, H., George, J. and Chakrabortty, A., “Hierarchical Control of Multi-Agent Systems using Online 

Reinforcement Learning,” American Control Conference (ACC), Denver, CO, July 2020
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Reducing Learning Time via Hierarchical Approximation
Homogeneous Agents

Final controller is optimal !
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Comparisons Between Different Algorithms

C-HRL: Apply a customized HRL algorithm to decomposed problems
** :   Computational time is longer than 60s

Homogeneous Agents

Final controller is optimal !

Similarity transformation allows to decouple the problem.

Comparison between Centralized RL and HRL

G. Jing, H. Bai, J. George and A. Chakrabortty, “Decomposability and Parallel Computation of Multi-Agent LQR”, in 

FrA12 Regular Session  (11:15-11:30) American Control Conference, to appear, 2021. 
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HRL Example: Formation Control of Multiple Groups

Initial agent 
positions

Desired 
formation

Target 
positions
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HRL Example: Formation Control of Multiple Groups
Heterogeneous Agents
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Trajectories of agents under optimal and approximated optimal controllers. Targets 
are denoted by +’s. Different colors indicate different groups.

Simulation results: 
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Trajectories of agents under optimal and approximated optimal controllers. Targets 
are denoted by +’s. Different colors indicate different groups.

Simulation results: 
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Decomposition



36

Decomposition Strategies

number of pairs of agents that do not 
need to communicate with each other.

Jing, et al. Model-Free 
Optimal Control of Linear 
Multi-Agent Systems via 
Decomposition and 
Hierarchical Approximation
IEEE TCNS, 2021. 
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Multi-Agent Formation Maneuver Control 

: leaders
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Multi-Agent Formation Maneuver Control 

Optimal (centralized, complete 
communication graph) 

Non-optimal 
(distributed, stable) 
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Simulation results: HRL 

(a)

(b)

(a)
(b)
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Microsoft AirSim (Aerial Informatics and Robotics Simulation) 

An open-source, cross platform simulator for drones, ground vehicles such 
as cars and various other objects, built on Epic Games’ Unreal Engine 4 as a 
platform for AI research.

https://microsoft.github.io/AirSim/
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AirSim Simulation – 2 Teams

• Trajectory: Minimum Snap (compute @ 10 Hz)

• Position Control: LQR (compute @ 20 Hz, update gains @ 10 Hz)

• Formation:

• Circle of radius 4

• 10 meters above target
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AirSim Simulation – Tracking & Formation Control 
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Conclusions
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