

U.S. ARMY COMBAT CAPABILITIES DEVELOPMENT COMMAND – ARMY RESEARCH LABORATORY

ADVANCED MANUFACTURING FOR THE PURSUIT OF HETEROGENOUS CERAMIC DESIGN

¹Lionel Vargas-Gonzalez, Ph.D., ¹Nicholas Ku, Ph.D., ¹Andrew Rosenberger, Ph.D., and ²Joshua Pelz

¹DEVCOM Army Research Laboratory, ²University of San Diego

UNCLASSIFIED APPROVED FOR PUBLIC RELEASE

APPROVED FOR PUBLIC RELEASE

WHY WE FIGHT: PROTECT OUR GREATEST ASSET

Material

Boron Carbide

Silicon Carbide

UHMWPE

SOLDIER PROTECTION

Density (g/cm³)

2.52

3.21

0.98

7.8

REQUIREMENTS

STOP the threat from penetrating armor

MINIMIZE energy transfer to Soldier

Contraction of the Contraction of the	e in a ringin meree
	VILLE
MB	The second
	Hard Hard
A The second sec	STAR.
and the second s	

Ultra-High Molecular Weight Polyethylene (UHMWPE)

Ceramic (B₄C, SiC) + UHMWPE Backer

IT'S A BALANCING AC	F BETWEEN PROT	ECTION AND BURDEN
---------------------	-----------------------	--------------------------

Weight of 10"x12"x0.3"

Plate

(lb)

3.9

5.0

1.3

12.3

NOVEL MATERIALS AND ADVANCED MECHANISMS ARE KEY

There are multiple approaches to enhancing ceramic armor performance:

VISION: CERAMIC DESIGN TO ENABLE NOVEL ARMOR MECHANISMS

Push beyond conventional powder processing methods to open armor design space

Design limited to stochastic powder mixing!

Decussation in Human Teeth Enamel; D. Bajaj, D.D. Arola / Biomaterials 30 (2009) 4037–4046

SHELL Technique for Strombug Gigus Structures;

Karambelas et al., Ceram. Int. 39 (2013)

CERAMIC AM METHODS AT DEVCOM ARL

Material Extrusion (Direct-Ink-Write)

Graded SiC-B4C part with microstructure shown right

Vat Polymerization (Stereolithography)

- Finest resolution
- Ability to create complex shapes

0.2mm wall

0.2mm gap

(Binder Jetting)

MANUFACTURINGCLIDE

Powder Bed Fusion

- Scalable for industrial applications
- Ability to create complex shapes

AFC logo made of SiC armor ceramic on the ExOne Innovent+

APPROVED FOR PUBLIC RELEASE

ARL DIRECT-INK-WRITE (DIW) SYSTEM

Feed System

Precise, Plunger-Driven Volumetric Feed Scalable FS Units

Base System

LulzBot Taz 6 Aleph Objects, Loveland, CO

Components 3D printed using the provided FDM toolhead

ARL-TR-8851 (2019)

Multimaterial In-Line Mixing Interchangeable Nozzle

Print Head

Custom system for co-printing of multiple materials with in situ composition control

EXTERNAL LEVERAGING WITH USMA – AUGER DESIGN

USMA CAPSTONE PROJECT – TEAM "THE FINE PRINT"

CDTs Campanella, Figueroa-Cecco, Fujinaka, and Sasek Mentor: LTC Nowicki

Auger designs with different mixing features

IN-SITU MONITORING – PRESSURE SENSORS

DIRECT-INK-WRITE AM PROCESS OVERVIEW

ENABLING CERAMIC DESIGN THROUGH DIW

Demonstrated printability and densification for monolithic, graded, and layered ceramic structures not achievable through conventional manufacturing

APPROVED FOR PUBLIC RELEASE

11

MULTISCALE CERAMIC DESIGN – MESO- TO GRAIN-SCALE

Ability to tailor composition, impedance, stress state into the ceramic and multiple length scales

50 um

Crack bifurcation due

to compressive stress

in SiC

ENGINEERING OF RESIDUAL STRESSES

tine scan A: 20 µm step size

ension

300

1089

1087.5

0

100

x position (um)

200

(L-E) 1088.5

sition

ő 1088

Residual stresses in a design can be predictively modelled using part geometry, elastic/thermal material properties, and processing conditions

Residual stress can be *spatially* measured using Raman spectroscopy B₄C layers under tension

- Stress relieved near cracks
- SiC layers under compression
 - Compressive region localized near interface

End Goal: **Designing** With Residual **Stresses**

200

- Surface compression
 - Crack ٠ resistance
- Embedded compression
 - Crack arrest
 - Damage tolerance

Tools to provide confinement in armor through residual stresses at relevant length-scales

SLA FOR ENABLING CERAMIC TEXTURE TAILORING

Development of process science for tailorability of ceramic texture using passive and active alignment strategies

Hypothesis: Ceramics with high fracture toughness from microstructural texture will possess enhanced ballistic properties

Goals: Produce specimens with microstructurally enhanced toughness for testing

Approach: Leverage textured additive manufacturing of alumina as a rapid proof-of-concept process to evaluate hypothesis

GRAIN ORIENTATION IN TEXTURED CERAMICS

Development of process science for tailorability of ceramic texture using passive and active alignment strategies

Al₂O₃-0.5% Glass, HP+1300 Anneal

Demonstrated ability to texture ceramics using commercial ceramic AM equipment

- → Achieved full density after sintering
- Mimic the high-toughness structures observed in nature – bio-inspiration
- → Ability to tailor and tune ceramic alignment to design fracture-toughened ceramics with changing properties through the part geometry

OkV -Low

1250x

mechanisms

AM-ENABLED DESIGN OF POTENTIAL ENERGY MITIGATION

SLA technique allows for the validation of model-derived resonant structures for the reduction of energy loading during ballistic and blast events

BUILDING RESEARCH ECOSYSTEMS – A FORCE MULTIPLIER

CERAMIC ADDITIVE MANUFACTURING RESEARCH

