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Outline

Background in Metal Additive
Manufacturing (AM)

Digital Twins (DTs)

Case Study on Residual Stress
Prediction

DT Graph and Connectivity

Machine Learning in DT Robotic Wire Feed AM

(Source: Missouri University of Science and Technology [S&T]
Laser-Aided Manufacturing Process [LAMP} Laboratory)

Challenges and Future Work



LAMP Laboratory

Metal AM Research Since 1997

Custom AM System and Component
Design and Integration

AM Repairing

AM Monitoring and Control
AM Part Characterization
Hybrid System Integration and
Process Planning

DTs for AM Processes

Digital Factories

Advanced Materials and

Manufacturing (AM2) Process
(Source: Missouri S&T LAMP Laboratory)



Directed-Energy Deposition (DED)
Powder Feed Process

Lower Heat Input: Less base
metal distortion compared to
welding

Metallurgical Bond Between
Deposit and Substrate
Materials

Compatible With Many
Advanced Materials

Repair/Remanufacturing

Powder DED Process

(Source: MissouriS&T LAMP Laboratory)



Hybrid Manufacturing

Process Planning of Hybrid
DED Process

(Source: Missouri S&T LAMP Laboratory)



Metal AM: State of the Art

Metal AM has emerged as a disruptive digital-manufacturing
technology.

However, its broad adoption in industry is still hindered by several
Issues:

o Geometries Third Layer

o Materials Second Layer _ Second Layer

First Layer

o Processing Defects

Metal AM Substrate

o Residual Stresses

o Multimaterials
o And More



Possible Technology Helps

Model

Experiments

First Layer

Sensors
And More
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DT

A virtual representation of a process that spans its lifecycle; is updated from
real-time data; and uses process modeling, machine learning, and reasoning to
help decision-making.

AM System

ﬁSensors for Continuous Improvement
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(Source: Missouri S&T LAMP Laboratory)



Why DT? —

Gives insights into many critical aspects of a H
manufacturing process.

Has continuous improvement through:
Digital

o Sensor Data From Physical Tests
o Data From the Virtual Model(s)
Can be a critical tool for most decision-making.

Has improved operational efficiency, automation of
manual tasks, training, and validation (e.g., to
achieve the first-time build success).

Physical

DT of a Robot

(Source: Missouri S&T LAMP Laboratory) e



Foundational Research Gaps and Future
Directions for DTs (2024)

National Academies
Federal Agencies:

o Recommendation 1: Launch new cross-cutting
programs to advance mathematical, statistical, and
computational foundations for DTs.

o Recommendation 2: Ensure that verification,
validation, and uncertainty quantification are an
integral part of new DT programes.

And more
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Process Control in DT

Feedback control
4 Fuzzy Logic control

Feedback
Control

Sensor Data
Acquisition

Logic Controller Printer

Dynamically update print
instructions

Feed-
Forward
Control

Analytical Model

e
\ FEA Model
Surrogate Model

Note: FEA = finite-element analysis.

Control cycle
time

Microseconds (scan to scan)

Several seconds (layer to layer)

Building a DT

(Source: Missouri S&T LAMP Laboratory)
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Case Study on Residual Stress Prediction

Tensile stress conditions can
adversely affect material

performance or component
life.

Compressive stress conditions
can improve material fatigue
strength.

For integrated aviation

structures, deformation caused

by residual stress has become ReSiSdUaiﬂstreszfm%??ritment
one of the most prominent AM o e ohoreten)
problems.
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Multiphysics Models for AM at
Various Stages

Multi-Physics Computational Models at Different Stages of AM Process

Powder Laser Beam
Dynamics | Interaction

Melt Pool
Thermo-
fluidics

Microstructure

Phase
Transformation

Residual

Stresses and
Distortion

Before Solidification

During Solidification

Multiphysics Models

(Source: Missouri S&T LAMP Laboratory)
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Specimen and Material

Isometric View Top View \

3.5mm

6.4 mmI

End e« 3 6
I 2
Start . f 1

Note: TC1—Thermocouple 1, TC2 = Thermocouple 2.

DED Specimen and Scan Strategy

Residual Stress Model

(Source: Missouri S&T LAMP Laboratory)

Ilmm

Scan Parameters

Material Ti-6Al-4V
(Temperature-
Dependent
Properties)

Powder Feed Rate 2.0 g/min

Shielding Gas 40 psi
Pressure

Beam Spot Size 2.2 mm
Power 350 W

Scan Speed 200 mm/min
Dwell Time 0.15s

Note: Ti-6AL-4V = an alpha-beta titanium alloy.
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Conventional Method (Thermal, ~17 hr)

:
v
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Temperature Profile (°C) Using Conventional Method During
DED Deposition (a) Second Layer and (b) Fifth Layer

TC1
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Thermal Validation (°C) of Conventional Method Using TC1 and TC2

Process Thermal Model

(Source: Missouri S&T LAMP Laboratory)
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Energy Distribution Due to
Laser Heat Source

Laser Scan Direction

/
.

- Progressive Element Activation

@ Deactivated for Current Increment

- Activated in Previous Increment

(a)

Methodology

Uniform Body Heat Flux
Using the Chunk Method

- “Chunk” of elements Activated in current Step

@ Deactivated for Current Step

' Activated in Previous Step

(b)

Uniform Body Heat Flux
Using the Layer Method

' Layer of elements Activated in current Step

@ Deactivated for Current Step

' Activated in Previous Step

(c)

Residual Stress Model Methodology

(Source: Missouri S&T LAMP Laboratory)
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Experimental Setup

(a) In-House-Developed DED System at
Loy ""’w Missouri S&T
e IR W (b) Powder and Shielding Gas System

. 1<= Holder
s |

&= (c) Built Part Along With Thermocouples

Machine Parameters

Laser Type Nd:YAG
Maximum Laser Power 1 kW

Shielding Gas Argon
Thermocouple K-type
Data Acquisition Rate 0.01s

Note: Nd:YAG = neodymium-doped yttrium, aluminum, garnet. 17




Measuring and Approximation
Sensing/Monitoring in DED: Thermal History

Thermocouple

e e Pros: Cost Effective, Useful for Calibration

Cons: Difficult to Directly Measure Each
Layer and All Points Data

Optical Method

e Pros: Distributed Data and Layer-by-Layer
Monitoring

e Cons: Expensive and More Complex
Experimental Setup and Accessories

Residual Stress Experimental Setups

(Source: Missouri S&T LAMP Laboratory)
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Design of Experiments
Experimental Setup: Thermal History

Infrared Camera

Residual Stress Experimental Setups

(Source: Missouri S&T LAMP Laboratory)
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Conventional Method (Thermal, ~17 hr)

Temperature Profile (°C) Using Conventional Method During DED Deposition (a) Second Layer and (b) Fifth Layer

TC1
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Thermal Validation (°C) of Conventional Method Using TC1 and TC2

Residual Stress Modeling Result

(Source: Missouri S&T LAMP Laboratory)
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Chunk Method (Thermal)
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Residual Stress Modeling Result

(Source: Missouri S&T LAMP Laboratory)



Temprature (C)
—

Chunk Method (Thermal) (continued)
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Thermal Validation (°C) of Chunk Method With TC1 and TC2

Residual Stress Modeling Result

(Source: Missouri S&T LAMP Laboratory)
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Results and Discussion

Layer Method (Thermal)

3
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Thermal Loading (°C) Using Layer Method at (a) Third Layer and (b) Sixth Layer
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Residual Stress Modeling Result

(Source: Missouri S&T LAMP Laboratory)
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Time (mins)

Results

Computational Time Thermocouple 1 Error (%) Thermocouple 2 Error (%)
1200 45 60
41.4
1041 40
1000 50 49.2
35
800 30 40
g25 g
600 5 5 30
& 20 &
400 15 20
10 7 7.8
200 5.7 10
113 5
. s m
0 - — 0 e N

Simulation Methods Simulation Methods Simulation Methods

u Conventional Method u 1/4 Chunk Method = Conventional Method = 1/4 Chunk Method

m Conventional Method ®1/4 Chunk Method
= 1/2 Chunk Method Layer Method =1/2 Chunk Method

Layer Method =1/2 Chunk Method Layer Method

Note: Allthe simulations were performed in a computer having Intel(R) Xeon(R) W-2295 central processing unit at 3.00 GHz equipped with 18 cores and 128 GB random access memory at 2934 GHz.

Residual Stress Modeling Result

(Source: Missouri S&T LAMP Laboratory)
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What's Next?

It was just a very simple example.

Stresses can be tool path
dependent.

t is parameter dependent.
t is geometry dependent.
t is material dependent.

t has expensive trial-and-error
experiments.

And more.

Residual Stress Model

(Source: Missouri S&T LAMP Laboratory)
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DT Applications in Metal AM

Desired Microstructure
Robust Mechanical Properties
Strengths:

o Tensile

o Fatigue
Hardness
Ductility
Repair/Remanufacturing
Digital Materials
And More

26



DT Graph and Connectivity

A representation of an entire system,

made up of DTs (model, sensors, \Q
performance, etc.) connected by

relationships.

Key model parameters, key sensor
signatures, key material parameters, key
process parameters, key performance
indices, etc.

27



Overall Parameter Connectivity in DED Process

_ Material Property Laser Parameters
e (Qver 50 different process Melting Point; Grain size; power, mode, wavelength
para meters in metal AM Reflectivity distribution
processes have influences on ! Beam Delivery
. . Material Delivery System method; focal length
the final product quality.

method; nozzle
o - | effici characteristics; particle speed Focused laser beam
CompUtatlona erriciency Shield gas pressure

remains a significant challenge. .

Powder flow

* Toaddress this issue, characteristics
researchers have attempted to
reduce the computation time by
employing statistical methods
and machine learning. strength, structure

Carriage gas
pressure

Metal part
surface roughness; dimensional accuracy;

DED Process Parameters
(Source: Missouri S&T LAMP Laboratory) 28



Different Defect Sources in Laser AM

AM Machine: Faulty or improperly calibrated equipment leads to
defects in AM.
Possible Causes:

o Issues With the Laser Source

o Printing Chamber Conditions

o Faulty Powder Coating/Delivery System

o Improper Baseplate Dimensions

29



Different Defect Sources in Laser AM (continued)

* |nSitu Defects: There are improper printing conditions when the
laser interacts with the material.

e Possible Causes

o> Nonoptimal Conditions
o Material Composition Not up to the Requirements
o Material Ejection When Laser Inter Interacts With the Material

30



Different Defect Sources in Laser AM (continued)

* Printing Techniques: The printing techniques are applied during part
development.

e Possible Causes

o Nonoptimal Selection of Printing Supports
o Improper Part of Printing Strategy

31



Different Defect Sources in Laser AM (continued)

 Raw Material/Feedstock: Material quality used during printing
may differ.

e Possible Causes:

o The Process Applied to Produce Feedstock

o Recycled Feedstock Utilization

o External Gases Entrapment During Feedstock Preparation
o Nondesirable Elements in Powder Feedstock

o Characteristics of Feedstock

32
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Classification of Signatures

Molten Pool: Perimeter,
shape, temperature field

Layer Printing: Shape,
temperature field, distortion,
morphological surface

Powder Stream (DED):
Shape, flow rate, interaction
between feedstock and
baseplate

AM? Processing

(Source: Missouri S&T LAMP Laboratory)
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Process Signatures in Laser AM

Moving laser beam

i Processing Process
direction signatures
[
Shielding gas & q%
— 0 A Y,
Powder stream A E' = V2
S “,
Dilution area | g '
Uncmelted 1 X detecti Scanner
Rl -ray detection .
i . Powder Optical  _g o
microphone
Roller Pabricased bed ' /
objoet Interferometric
X-ray cavity
Visible light camera 4
Vacuum chamber 1
g ; l - il o W Balling

"""”“"'-;”"""'“’,“.'-\'P.M"-".-‘-'-V.a‘.'.'.'l‘.'ﬂ.'n'?\" Lack of fusion

800
600 m\h A e %M No pores
400 W%\‘MM Keyhole

Process Signatures

(Source: Missouri S&T LAMP Laboratory)
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Machine Learning in DT AM

AM processes are very complex.
Models are generally too slow.

It needs machine learning, such as surrogate models,
to help improve model interpretability and speed up
the analysis and decision-making.

Surrogate models are black-box models that
approximate a system’s behavior by fitting input-output
data to simple functions.
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Multi-physics simulation
results

Part
evaluation

In-situ monitoring

(Source:

In-situ monitoring

DT AM

Missouri S&T LAMP Laboratory)

Optimized
parameters
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Start

Design of Experiments

Geometry & Material
Laser Power
Scanning Speed
Hatching Space

Multi-Physics Modeling

® Finite element (FE) simulation

Thermal Model

® Temperature Dependent
Material Properties

End

Prediction & Evaluation

® Melt Pool Peak Temperature
& Dimension

® Algorithm Comparison

® R-Square Value

® RMSE & MAE

ML-Based Surrogate Model

® XGBoost

® Long-short Term Memory (LSTM)
® Bidirectional LSTM

® Garte Recurrent Unit (GRU)

Machine Learning to Build Surrogate Models

e Melr pool Peak

B o s s & s 8

*

DT AM

(Source: Missouri S&T LAMP Laboratory)

Note: RMSE = root mean square error, MAE = mean absolute error, XGBoost = Extreme Gradient Boosting, LSTM = long short-term memory, GRU = gated recurrent unit.

! Temperature
® Melr Pool Dimensions |

R o w

;  Data Extraction
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Algorithms

R-Square

RMSE

MAE

Computation

Time (s)

Memory

Usage (GB)

XGBoost
LSTM
Bi-LSTM
GRU

0.698
0.888
0.902
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0.0412
0.0369
0.0381
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Note: Bi-LSTM = bidirectional long short-term memory.
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Machine Learning Example

200 pm 200 pm

Melt pool
width

Melt pool
depth

\%4

S’
L

Laser power

Lack of fusion [T Balling
©2 Good prints [ Keyhole

j,u 0
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540 810 1080 13501620 1890 2160
Laser scanning speed, (mm/s)

DT AM

(Source: Missouri S&T LAMP Laboratory)
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DT for AM Parameter Control

Parameter tuning
Neural Reinforcement
netwcrrks. learning

Controller PSS e B i
.* Feedback control i m %‘D
¥
i
1
loT Devices 11 ;
with sen SOrs : e
LI | |
55‘”59" Dynamic fea ture
network processing
(vibration,  (fusion, ranking,
Physical twin  power, vectorization) Digital twin
thermal,
Note: loT — Internet of Things. dCou St":]
DT AM

(Source: Missouri S&T Intelligent Systems Center)
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DT Internal Architecture for AM Process

Desired outcome (0): parameters

l Controller SR
D (@) ~ch Undesired Training
{ } S : ) outcome (1) dataset
0 0O : - -+ o .
> :
Remforcement Training Corrective ML

learning model

action input Model
il vector<v1,vZ2,...v3>
) O%
: Maijority

Input Normalization
= Balanced

tor<vi vz,...v3> s
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= 00 Instances

Sensur
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Manufacturin ~——
g T = @)
Data Normalization, Train
storage reduction dataset

Minority Oversampling

DT AM Instances

(Source: Missouri S&T Intelligent Systems Center 42



Instance-Based TL

Feature-Based TL

Model-Based TL

Multitask Learning

Transfer Learning (TL)

Adjusts weights
of source data

Transforms
features into a
common space

Transfers a
pretrained model

Trains multiple
tasks together

Adapting a melt pool depth Same features,
model from Machine A to different
Machine B distributions

Using a model trained on one Different features
material to predict behavior in or distributions
another

Using a model trained on laser Similar tasks,
powder bed fusion to predict different domains
DED behavior

Predicting mechanical Related tasks with
properties and surface limited data

roughness simultaneously
43



Challenges and Future Work: DT
Calibration (Physical to Virtual)

There is a question on how to use
multiphysical feedback to
estimate multimodel parameters
for virtual representation,
especially for large-scale, complex "
systemes. E

300 1

250

Solution may not exist, may not

Thermal History

Experiment Simulation

be unique’ Or may not (III'HS ''''' I(‘}O‘"‘];0""2(’]0"1"h'2§0""360""35’0""4(')0""4%""560

continuously depend on the data.

May be a multiple-to-one
relationship but can only measure
one in situ.

Thermal History

(Source: Missouri S&T LAMP Laboratory)
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Challenges and Future Work: Data
Assimilation (Physical to Virtual)

 Dynamic nature of DTs and uncertainties
and validity of a model’s fidelity may
evolve over time.

* There is a question on how to integrate
data from various cases (different
materials, geometry, applications, etc.).

e There are DT demands for actionable time
scales.

300 1

250 1

Thermal History

Experiment Simulation

Thermal History

(Source: Missouri S&T LAMP Laboratory)
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Challenges and Future Work: Prediction, Control,
Steering, and Decision Under Uncertainty
(Virtual to Physical)

* Not only predict how a system will respond to a new
action or control but also assess the uncertainty

associated wit

n that prediction.

e Make critical ¢

assessment (e.

ecisions for rare events and risk
g., failure in an engineering system,

material composition, tool path, etc.).
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Conclusions

AM is a disruptive digital manufacturing technology.

Concepts for developing DTs for metal AM are
summarized.

DT can often learn from the past and resolve processing
issues quickly.

DT can be a key to AM process certification for a new
part.

There are still challenges to overcome.
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