Digital Twin Research and Development for a Metal Additive Manufacturing Process

Frank Liou Michael and Joyce Bytnar Professor, Mechanical Engineering Director, Intelligent Systems Center Missouri University of Science and Technology Rolla, MO <u>liou@mst.edu</u>

Outline

- Background in Metal Additive Manufacturing (AM)
- Digital Twins (DTs)
- Case Study on Residual Stress
 Prediction
- DT Graph and Connectivity
- Machine Learning in DT
- Challenges and Future Work

Robotic Wire Feed AM

(Source: Missouri University of Science and Technology [S&T] Laser-Aided Manufacturing Process [LAMP} Laboratory)

LAMP Laboratory

- Metal AM Research Since 1997
- Custom AM System and Component Design and Integration
- AM Repairing
- AM Monitoring and Control
- AM Part Characterization
- Hybrid System Integration and Process Planning
- DTs for AM Processes
- Digital Factories

Advanced Materials and Manufacturing (AM²) Process (Source: Missouri S&T LAMP Laboratory)

Directed-Energy Deposition (DED) Powder Feed Process

- Lower Heat Input: Less base metal distortion compared to welding
- Metallurgical Bond Between Deposit and Substrate Materials
- Compatible With Many Advanced Materials
- Repair/Remanufacturing

Powder DED Process (Source: Missouri S&T LAMP Laboratory)

Hybrid Manufacturing

Metal AM: State of the Art

- Metal AM has emerged as a disruptive digital-manufacturing technology.
- However, its broad adoption in industry is still hindered by several issues:
 - $_{\circ}$ Geometries
 - Materials
 - Processing Defects
 - Residual Stresses
 - Multimaterials
 - $_{\circ}$ And More

Possible Technology Helps

- Model
- Experiments
- Sensors
- And More

Modeling of Powder DED Process

DT

A virtual representation of a process that spans its lifecycle; is updated from real-time data; and uses process modeling, machine learning, and reasoning to help decision-making.

Why DT?

- Gives insights into many critical aspects of a manufacturing process.
- Has continuous improvement through:
 - Sensor Data From Physical Tests
 - Data From the Virtual Model(s)
- Can be a critical tool for most decision-making.
- Has improved operational efficiency, automation of manual tasks, training, and validation (e.g., to achieve the first-time build success).

Digital

Foundational Research Gaps and Future Directions for DTs (2024)

- National Academies
- Federal Agencies:
 - Recommendation 1: Launch new cross-cutting programs to advance mathematical, statistical, and computational foundations for DTs.
 - Recommendation 2: Ensure that verification, validation, and uncertainty quantification are an integral part of new DT programs.
- And more

Process Control in DT

Building a DT

(Source: Missouri S&T LAMP Laboratory)

Case Study on Residual Stress Prediction

- Tensile stress conditions can adversely affect material performance or component life.
- Compressive stress conditions can improve material fatigue strength.
- For integrated aviation structures, deformation caused by residual stress has become one of the most prominent AM problems.

Residual Stress Experiment

Multiphysics Models for AM at Various Stages

Specimen and Material

Scan Speed

Dwell Time

Note: Ti-6AL-4V = an alpha-beta titanium alloy.

Note: TC1 – Thermocouple 1, TC2 = Thermocouple 2.

DED Specimen and Scan Strategy

Residual Stress Model

(Source: Missouri S&T LAMP Laboratory)

200 mm/min

0.15 s

Conventional Method (Thermal, ~17 hr)

Thermal Validation (°C) of Conventional Method Using TC1 and TC2

Process Thermal Model

Methodology

Experimental Setup

Thermocoup

(c)

- (a) In-House-Developed DED System at Missouri S&T
- (b) Powder and Shielding Gas System
- (c) Built Part Along With Thermocouples

Machine Parameters				
Laser Type	Nd:YAG			
Maximum Laser Power	1 kW			
Shielding Gas	Argon			
Thermocouple	K-type			
Data Acquisition Rate	0.01 s			

Note: Nd:YAG = neodymium-doped yttrium, aluminum, garnet.

Measuring and Approximation

Sensing/Monitoring in DED: Thermal History

Thermocouple

- Pros: Cost Effective, Useful for Calibration
- Cons: Difficult to Directly Measure Each Layer and All Points Data

- Pros: Distributed Data and Layer-by-Layer Monitoring
- Cons: Expensive and More Complex Experimental Setup and Accessories

Residual Stress Experimental Setups

Residual Stress Experimental Setups (Source: Missouri S&T LAMP Laboratory)

Conventional Method (Thermal, ~17 hr)

Temperature Profile (°C) Using Conventional Method During DED Deposition (a) Second Layer and (b) Fifth Layer

Thermal Validation (°C) of Conventional Method Using TC1 and TC2

Residual Stress Modeling Result

Chunk Method (Thermal)

¹/₄-Track Length ¹/₂-Track Length

Thermal Loading (°C) Using Chunk Method ¼-Track Length at (a) Third Layer and (b) Sixth Layer and ½-Track Length at (c) Third Layer and (d) Sixth Layer

Residual Stress Modeling Result

Chunk Method (Thermal) (continued)

Thermal Validation (°C) of Chunk Method With TC1 and TC2

Residual Stress Modeling Result

Results and Discussion

Layer Method (Thermal)

Thermal History (°C) Using Layer Method

Residual Stress Modeling Result

Results

Note: All the simulations were performed in a computer having Intel(R) Xeon(R) W-2295 central processing unit at 3.00 GHz equipped with 18 cores and 128 GB random access memory at 2934 GHz.

Residual Stress Modeling Result

What's Next?

- It was just a very simple example.
- Stresses can be tool path dependent.
- It is parameter dependent.
- It is geometry dependent.
- It is material dependent.
- It has expensive trial-and-error experiments.
- And more.

DT Applications in Metal AM

- Desired Microstructure
- Robust Mechanical Properties
- Strengths:
 - Tensile
 - $_{\circ}$ Fatigue
- Hardness
- Ductility
- Repair/Remanufacturing
- Digital Materials
- And More

DT Graph and Connectivity

- A representation of an entire system, made up of DTs (model, sensors, performance, etc.) connected by relationships.
- Key model parameters, key sensor signatures, key material parameters, key process parameters, key performance indices, etc.

Overall Parameter Connectivity in DED Process

- Over 50 different process parameters in metal AM processes have influences on the final product quality.
- Computational efficiency remains a significant challenge.
- To address this issue, researchers have attempted to reduce the computation time by employing statistical methods and machine learning.

DED Process Parameters

Different Defect Sources in Laser AM

- AM Machine: Faulty or improperly calibrated equipment leads to defects in AM.
- Possible Causes:
 - Issues With the Laser Source
 - Printing Chamber Conditions
 - Faulty Powder Coating/Delivery System
 - Improper Baseplate Dimensions

Different Defect Sources in Laser AM (continued)

- In Situ Defects: There are improper printing conditions when the laser interacts with the material.
- Possible Causes
 - Nonoptimal Conditions
 - Material Composition Not up to the Requirements
 - Material Ejection When Laser Inter Interacts With the Material

Different Defect Sources in Laser AM (continued)

- Printing Techniques: The printing techniques are applied during part development.
- Possible Causes
 - Nonoptimal Selection of Printing Supports
 - Improper Part of Printing Strategy

Different Defect Sources in Laser AM (continued)

- Raw Material/Feedstock: Material quality used during printing may differ.
- Possible Causes:
 - The Process Applied to Produce Feedstock
 - Recycled Feedstock Utilization
 - External Gases Entrapment During Feedstock Preparation
 - Nondesirable Elements in Powder Feedstock
 - Characteristics of Feedstock

Correlation Map

Classification of Signatures

- Molten Pool: Perimeter, shape, temperature field
- Layer Printing: Shape, temperature field, distortion, morphological surface
- Powder Stream (DED): Shape, flow rate, interaction between feedstock and baseplate

AM² Processing (Source: Missouri S&T LAMP Laboratory)

Process Signatures in Laser AM

Process Signatures (Source: Missouri S&T LAMP Laboratory)

Machine Learning in DT AM

- AM processes are very complex.
- Models are generally too slow.
- It needs machine learning, such as surrogate models, to help improve model interpretability and speed up the analysis and decision-making.
- Surrogate models are black-box models that approximate a system's behavior by fitting input-output data to simple functions.

DT of AM

Machine Learning to Build Surrogate Models

Surrogate Models for Melt Pool Temperature

Algorithms	R-Square	RMSE	MAE	Computation Time (s)	Memory Usage (GB)
XGBoost	0.698	0.1031	0.0629	16.22	0.269
LSTM	0.888	0.0539	0.0412	76.23	1.37
Bi-LSTM	0.902	0.0501	0.0369	120.55	2.65
GRU	0.903	0.0503	0.0381	67.75	1.30

Note: Bi-LSTM = bidirectional long short-term memory.

Machine Learning Example

DT for AM Parameter Control

DT AM

DT Internal Architecture for AM Process

Transfer Learning (TL)

TL Method	Key Idea	Example in AM	Best for
Instance-Based TL	Adjusts weights of source data	Adapting a melt pool depth model from Machine A to Machine B	Same features, different distributions
Feature-Based TL	Transforms features into a common space	Using a model trained on one material to predict behavior in another	Different features or distributions
Model-Based TL	Transfers a pretrained model	Using a model trained on laser powder bed fusion to predict DED behavior	Similar tasks, different domains
Multitask Learning	Trains multiple tasks together	Predicting mechanical properties and surface roughness simultaneously	Related tasks with limited data

Challenges and Future Work: DT Calibration (Physical to Virtual)

- There is a question on how to use multiphysical feedback to estimate multimodel parameters for virtual representation, especially for large-scale, complex systems.
- Solution may not exist, may not be unique, or may not continuously depend on the data.
- May be a multiple-to-one relationship but can only measure one in situ.

Thermal History (Source: Missouri S&T LAMP Laboratory)

Challenges and Future Work: Data Assimilation (Physical to Virtual)

- Dynamic nature of DTs and uncertainties and validity of a model's fidelity may evolve over time.
- There is a question on how to integrate data from various cases (different materials, geometry, applications, etc.).
- There are DT demands for actionable time scales.

Challenges and Future Work: Prediction, Control, Steering, and Decision Under Uncertainty (Virtual to Physical)

- Not only predict how a system will respond to a new action or control but also assess the uncertainty associated with that prediction.
- Make critical decisions for rare events and risk assessment (e.g., failure in an engineering system, material composition, tool path, etc.).

Conclusions

- AM is a disruptive digital manufacturing technology.
- Concepts for developing DTs for metal AM are summarized.
- DT can often learn from the past and resolve processing issues quickly.
- DT can be a key to AM process certification for a new part.
- There are still challenges to overcome.