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Robotic Wire Feed AM
(Source:  Missouri University of Science and Technology [S&T]

Laser-Aided Manufacturing Process [LAMP} Laboratory)



LAMP Laboratory

• Metal AM Research Since 1997
• Custom AM System and Component 

Design and Integration
• AM Repairing
• AM Monitoring and Control
• AM Part Characterization
• Hybrid System Integration and 

Process Planning
• DTs for AM Processes
• Digital Factories
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Advanced Materials and 
Manufacturing (AM2) Process

(Source:  Missouri S&T LAMP Laboratory)



Directed-Energy Deposition (DED)
Powder Feed Process

• Lower Heat Input: Less base
metal distortion compared to 
welding

• Metallurgical Bond Between 
Deposit and Substrate
Materials

• Compatible With Many
Advanced Materials

• Repair/Remanufacturing
Powder DED Process
(Source:  Missouri S&T LAMP Laboratory)
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Hybrid Manufacturing
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Process Planning of Hybrid 
DED Process

(Source:  Missouri S&T LAMP Laboratory)



Metal AM: State of the Art
• Metal AM has emerged as a disruptive digital-manufacturing 

technology.
• However, its broad adoption in industry is still hindered by several 

issues:
o Geometries

o Materials

o Processing Defects 

o Residual Stresses

o Multimaterials

o And More

Metal AM Substrate
First Layer

Layer 2

Third Layer

Second Layer Second Layer
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Possible Technology Helps
• Model
• Experiments
• Sensors
• And More

First Layer

Second Layer

Third Layer

Modeling of Powder DED Process
(Source:  Tariq, Missouri S&T LAMP Laboratory)
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DT
A virtual representation of a process that spans its lifecycle; is updated from 
real-time data; and uses process modeling, machine learning, and reasoning to 
help decision-making.
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DT of DED Process

(Source:  Missouri S&T LAMP Laboratory)



Why DT?
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Physical

Digital

• Gives insights into many critical aspects of a 
manufacturing process.

• Has continuous improvement through:
o Sensor Data From Physical Tests
o Data From the Virtual Model(s)

• Can be a critical tool for most decision-making.
• Has improved operational efficiency, automation of 

manual tasks, training, and validation (e.g., to 
achieve the first-time build success).

DT of a Robot
(Source:  Missouri S&T LAMP Laboratory)



Foundational Research Gaps and Future 
Directions for DTs (2024)

• National Academies

• Federal Agencies:

o Recommendation 1: Launch new cross-cutting 
programs to advance mathematical, statistical, and 
computational foundations for DTs.

o Recommendation 2: Ensure that verification,
validation, and uncertainty quantification are an 
integral part of new DT programs.

• And more
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Process Control in DT
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Building a DT

(Source:  Missouri S&T LAMP Laboratory)

Note:  FEA = finite-element analysis.



Case Study on Residual Stress Prediction
• Tensile stress conditions can 

adversely affect material 
performance or component 
life.

• Compressive stress conditions 
can improve material fatigue 
strength.

• For integrated aviation
structures, deformation caused 
by residual stress has become
one of the most prominent AM
problems.

Residual Stress Experiment
(Source:  Missouri S&T LAMP Laboratory)
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Multiphysics Models for AM at 
Various Stages

Multiphysics Models
(Source:  Missouri S&T LAMP Laboratory)
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Specimen and Material

Note:  TC1 – Thermocouple 1, TC2 = Thermocouple 2.

DED Specimen and Scan Strategy

Scan Parameters
Material Ti-6Al-4V

(Temperature-
Dependent 
Properties)

Powder Feed Rate 2.0 g/min

Shielding Gas
Pressure

40 psi

Beam Spot Size 2.2 mm

Power 350 W
Scan Speed 200 mm/min
Dwell Time 0.15 s
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Residual Stress Model

(Source:  Missouri S&T LAMP Laboratory)

Note:  Ti-6AL-4V = an alpha-beta titanium alloy.



Conventional Method (Thermal, ~17 hr)

Temperature Profile (°C) Using Conventional Method During
DED Deposition (a) Second Layer and (b) Fifth Layer

Thermal Validation (°C) of Conventional Method Using TC1 and TC2
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Process Thermal Model

(Source:  Missouri S&T LAMP Laboratory)



Methodology
Energy Distribution Due to 

Laser Heat Source
Uniform Body Heat Flux 

Using the Chunk Method
Uniform Body Heat Flux
Using the Layer Method

Residual Stress Model Methodology
(Source:  Missouri S&T LAMP Laboratory)
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Experimental Setup

(a) In-House-Developed DED System at
Missouri S&T

(b) Powder and Shielding Gas System
(c) Built Part Along With Thermocouples
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Machine Parameters
Laser Type Nd:YAG
Maximum Laser Power 1 kW
Shielding Gas Argon
Thermocouple K-type
Data Acquisition Rate 0.01 s

Note:  Nd:YAG = neodymium-doped yttrium, aluminum, garnet.

(Source:  Missouri S&T LAMP Laboratory)



Sensing/Monitoring in DED: Thermal History
Thermocouple

 Pros: Cost Effective, Useful for Calibration
 Cons: Difficult to Directly Measure Each

Layer and All Points Data

Optical Method
 Pros: Distributed Data and Layer-by-Layer 

Monitoring
 Cons: Expensive and More Complex 

Experimental Setup and Accessories

Measuring and Approximation

Residual Stress Experimental Setups
(Source:  Missouri S&T LAMP Laboratory) 18



Experimental Setup: Thermal History

Infrared Camera

Design of Experiments
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Residual Stress Experimental Setups

(Source:  Missouri S&T LAMP Laboratory)



Conventional Method (Thermal, ~17 hr)

Temperature Profile (°C) Using Conventional Method During DED Deposition (a) Second Layer and (b) Fifth Layer

Thermal Validation (°C) of Conventional Method Using TC1 and TC2

Residual Stress Modeling Result
(Source:  Missouri S&T LAMP Laboratory) 20



Chunk Method (Thermal)

Thermal Loading (°C) Using Chunk Method ¼-Track Length at (a) Third Layer and
(b) Sixth Layer and ½-Track Length at (c) Third Layer and (d) Sixth Layer

Residual Stress Modeling Result
(Source:  Missouri S&T LAMP Laboratory)
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¼-Track Length ½-Track Length



Chunk Method (Thermal) (continued)
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Thermal Validation (°C) of Chunk Method With TC1 and TC2

Residual Stress Modeling Result
(Source:  Missouri S&T LAMP Laboratory)



Results and Discussion

Thermal Loading (°C) Using Layer Method at (a) Third Layer and (b) Sixth Layer

Layer Method (Thermal)

Thermal History (°C) Using Layer Method

Residual Stress Modeling Result
(Source:  Missouri S&T LAMP Laboratory)
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Results

Note: All the simulations were performed in a computer having Intel(R) Xeon(R) W-2295 central processing unit at 3.00 GHz equipped with 18 cores and 128 GB random access memory at 2934 GHz.

Residual Stress Modeling Result
(Source:  Missouri S&T LAMP Laboratory)
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What’s Next?

• It was just a very simple example.
• Stresses can be tool path 

dependent.
• It is parameter dependent.
• It is geometry dependent.
• It is material dependent.
• It has expensive trial-and-error

experiments.
• And more.

Residual Stress Model
(Source:  Missouri S&T LAMP Laboratory)
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DT Applications in Metal AM

• Desired Microstructure
• Robust Mechanical Properties
• Strengths:

o Tensile
o Fatigue

• Hardness
• Ductility
• Repair/Remanufacturing
• Digital Materials
• And More



DT Graph and Connectivity

• A representation of an entire system, 
made up of DTs (model, sensors, 
performance, etc.) connected by 
relationships.

• Key model parameters, key sensor 
signatures, key material parameters, key 
process parameters, key performance 
indices, etc.
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Overall Parameter Connectivity in DED Process
• Over 50 different process 

parameters in metal AM 
processes have influences on 
the final product quality.

• Computational efficiency 
remains a significant challenge.

• To address this issue, 
researchers have attempted to 
reduce the computation time by 
employing statistical methods 
and machine learning.
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DED Process Parameters

(Source:  Missouri S&T LAMP Laboratory)
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Different Defect Sources in Laser AM

• AM Machine: Faulty or improperly calibrated equipment leads to 
defects in AM.

• Possible Causes:
o Issues With the Laser Source
o Printing Chamber Conditions
o Faulty Powder Coating/Delivery System
o Improper Baseplate Dimensions



• In Situ Defects: There are improper printing conditions when the 
laser interacts with the material.

• Possible Causes

o Nonoptimal Conditions
o Material Composition Not up to the Requirements
o Material Ejection When Laser Inter Interacts With the Material
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Different Defect Sources in Laser AM (continued)



• Printing Techniques: The printing techniques are applied during part 
development.

• Possible Causes

o Nonoptimal Selection of Printing Supports
o Improper Part of Printing Strategy
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Different Defect Sources in Laser AM (continued)



• Raw Material/Feedstock: Material quality used during printing 
may differ.

• Possible Causes:

o The Process Applied to Produce Feedstock
o Recycled Feedstock Utilization
o External Gases Entrapment During Feedstock Preparation
o Nondesirable Elements in Powder Feedstock
o Characteristics of Feedstock
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Different Defect Sources in Laser AM (continued)



Correlation Map 
(Source:  Missouri S&T LAMP Laboratory)
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Classification of Signatures

• Molten Pool: Perimeter,
shape, temperature field

• Layer Printing: Shape, 
temperature field, distortion,
morphological surface

• Powder Stream (DED): 
Shape, flow rate, interaction
between feedstock and
baseplate

AM2 Processing
(Source:  Missouri S&T LAMP Laboratory)
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Process Signatures in Laser AM

Process Signatures
(Source:  Missouri S&T LAMP Laboratory) 35



Machine Learning in DT AM

• AM processes are very complex.
• Models are generally too slow.
• It needs machine learning, such as surrogate models, 

to help improve model interpretability and speed up 
the analysis and decision-making.

• Surrogate models are black-box models that
approximate a system’s behavior by fitting input-output 
data to simple functions.
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DT of AM

37
DT AM

(Source:  Missouri S&T LAMP Laboratory)



Machine Learning to Build Surrogate Models

DT AM
(Source:  Missouri S&T LAMP Laboratory)
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Note: RMSE = root mean square error, MAE = mean absolute error, XGBoost = Extreme Gradient Boosting, LSTM = long short-term memory, GRU = gated recurrent unit.



Surrogate Models for Melt Pool Temperature

DT AM
(Source:  Missouri S&T LAMP Laboratory) 39

Note:  Bi-LSTM = bidirectional long short-term memory. 



Machine Learning Example

• S-pattern (Hilbert pattern) achieved the minimum residual stress
• An increasing mean scan vector length could raise the overall magnitude of 

residual stresses
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DT AM

(Source:  Missouri S&T LAMP Laboratory)

 



DT for AM Parameter Control

DT AM
(Source:  Missouri S&T Intelligent Systems Center) 41

Note: IoT – Internet of Things.



DT Internal Architecture for AM Process

DT AM
(Source:  Missouri S&T Intelligent Systems Center 42



Transfer Learning (TL)
TL Method Key Idea Example in AM Best for

Instance-Based TL Adjusts weights 
of source data 

Adapting a melt pool depth 
model from Machine A to 
Machine B 

Same features, 
different 
distributions

Feature-Based TL Transforms 
features into a 
common space 

Using a model trained on one 
material to predict behavior in 
another 

Different features 
or distributions

Model-Based TL Transfers a 
pretrained model

Using a model trained on laser 
powder bed fusion to predict 
DED behavior 

Similar tasks, 
different domains

Multitask Learning Trains multiple 
tasks together

Predicting mechanical 
properties and surface 
roughness simultaneously 

Related tasks with 
limited data
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Challenges and Future Work: DT 
Calibration (Physical to Virtual)

• There is a question on how to use 
multiphysical feedback to 
estimate multimodel parameters 
for virtual representation, 
especially for large-scale, complex 
systems.

• Solution may not exist, may not 
be unique, or may not 
continuously depend on the data.

• May be a multiple-to-one 
relationship but can only measure
one in situ.

Thermal History
(Source:  Missouri S&T LAMP Laboratory)
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Challenges and Future Work: Data
Assimilation (Physical to Virtual)

• Dynamic nature of DTs and uncertainties
and validity of a model’s fidelity may 
evolve over time.

• There is a question on how to integrate 
data from various cases (different 
materials, geometry, applications, etc.).

• There are DT demands for actionable time 
scales. 
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Thermal History
(Source:  Missouri S&T LAMP Laboratory)



Challenges and Future Work: Prediction, Control, 
Steering, and Decision Under Uncertainty

(Virtual to Physical)
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• Not only predict how a system will respond to a new 
action or control but also assess the uncertainty 
associated with that prediction. 

• Make critical decisions for rare events and risk 
assessment (e.g., failure in an engineering system, 
material composition, tool path, etc.).



Conclusions
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• AM is a disruptive digital manufacturing technology.
• Concepts for developing DTs for metal AM are 

summarized.
• DT can often learn from the past and resolve processing 

issues quickly.
• DT can be a key to AM process certification for a new 

part.
• There are  still challenges to overcome.
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