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About 

DTIC and DSIAC 

The Defense Technical Information Center (DTIC) preserves, curates, and shares knowledge 

from the U.S. Department of Defense’s (DoD’s) annual multibillion-dollar investment in science 

and technology, multiplying the value and accelerating capability to the Warfighter.  DTIC 

amplifies this investment by collecting information and enhancing the digital search, analysis, 

and collaboration tools that make information widely available to decision-makers, researchers, 

engineers, and scientists across the Department. 

DTIC sponsors the DoD Information Analysis Centers (DoDIAC), which provide critical, flexible, 

and cutting-edge research and analysis to produce relevant and reusable scientific and 

technical information for acquisition program managers, DoD laboratories, Program Executive 

Offices, and Combatant Commands.  The IACs are staffed by, or have access to, hundreds of 

scientists, engineers, and information specialists who provide research and analysis to 

customers with diverse, complex, and challenging requirements. 

The Defense Systems Information Analysis Center (DSIAC) is a DoDIAC sponsored by DTIC to 

provide expertise in 10 technical focus areas:  weapons systems; survivability and vulnerability; 

reliability, maintainability, quality, supportability, and interoperability (RMQSI); advanced 

materials; military sensing; autonomous systems; energetics; directed energy; non-lethal 

weapons; and command, control, communications, computers, intelligence, surveillance, and 

reconnaissance (C4ISR).  DSIAC is operated by SURVICE Engineering Company under 

contract FA8075-21-D-0001. 

TI Research 

A chief service of the DoDIAC is free technical inquiry (TI) research limited to four research 

hours per inquiry.  This TI response report summarizes the research findings of one such 

inquiry.  Given the limited duration of the research effort, this report is not intended to be a deep, 

comprehensive analysis but rather a curated compilation of relevant information to give the 

reader/inquirer a “head start” or direction for continued research. 
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Abstract 

Hyperspectral imaging systems are able to address critical challenges, ranging from detecting 

chemical, biological, radiological, nuclear, and explosives materials to identifying targets from 

remote distances.  However, due to their complexity, these sensors are expensive to build, 

maintain, and operate.  A promising solution that has been recently explored is to leverage the 

abundance of inexpensive and mature multispectral cameras to reconstruct hyperspectral 

images via machine-learning (ML) software. 

This report provides a review of ML algorithms that leverage color (red, green, blue) data to 

reconstruct hyperspectral imagery.  There are two classes of algorithms that are reviewed here.  

The first is the classical, prior-information-based methods that utilize dictionary and 

manifold-learning techniques to reconstruct hyperspectral signatures from three-channel color 

data.  The second relies on deep-learning methods that use neural networks to learn the 

mapping from color to hyperspectral using training data and supervised learning.  These 

approaches are summarized, and their relative advantages and disadvantages are discussed.  

Finally, a plan is outlined to extend current work from visible and near-infrared (IR) data to IR 

imagery. 

  



 

 Distribution Statement A.  Approved for public release:  distribution is unlimited. iii 

 

Contents 

About .................................................................................................................................... i 

Abstract .............................................................................................................................. ii 

List of Figures ................................................................................................................... iv 

List of Tables ..................................................................................................................... iv 

1.0  TI Request .................................................................................................................... 1 

1.1  Inquiry ....................................................................................................................................1 

1.2  Description ............................................................................................................................1 

2.0  TI Response ................................................................................................................. 1 

2.1  What Is Hyperspectral Imaging? ...........................................................................................1 

2.2  What Is Computational Hyperspectral Imaging? ..................................................................2 

2.3  Survey of Computational Hyperspectral Imaging Methods ..................................................3 

2.3.1  Prior‑Based Methods. ....................................................................................................3 

2.3.2  Data‑Driven Methods .....................................................................................................4 

2.3.3  Comparison and Analysis ..............................................................................................5 

2.4  Future Research Considerations ..........................................................................................5 

2.4.1  Network Architecture ......................................................................................................5 

2.4.2  Loss Function .................................................................................................................5 

2.4.3  Resolving Dataset Issues ..............................................................................................6 

2.4.4  Learning Strategies ........................................................................................................6 

2.5  Extending to IR Hyperspectral Imaging ................................................................................6 

References ......................................................................................................................... 8 

Biography ......................................................................................................................... 12 

Bibliography ..................................................................................................................... 13 

 



 

 Distribution Statement A.  Approved for public release:  distribution is unlimited. iv 

 

List of Figures 

Figure 1.  Illustration of Hyperspectral Remote Sensing ................................................................2 

Figure 2.  Illustration of the Process of Converting HSIs to Color and Reconstructing 

Hyperspectral Data From Color Images ..........................................................................................3 

List of Tables 

Table 1.  Comparing Prior-Based and Data-Driven Methods for Spectral Reconstruction ........... 5 

 



 

 Distribution Statement A.  Approved for public release:  distribution is unlimited. 1 

 

1.0  TI Request 

1.1  Inquiry 

Can infrared (IR) hyperspectral imagery be acquired from IR multispectral sensors? 

1.2  Description 

The Defense Systems Information Analysis Center was asked to explore the use of 

computational imaging for IR hyperspectral sensors.  The U.S. Department of Defense and 

intelligence community exploit hyperspectral imaging for challenges ranging from detecting 

chemical, biological, radiological, nuclear, and explosives (CBRNE) materials to identifying 

targets from remote distances.  However, hyperspectral sensors are often optically and 

mechanically complex systems, making them expensive to build and operate.  An intriguing 

solution to this challenge is to reconstruct hyperspectral data from simpler multispectral 

cameras that are based on mature technology and easier to operate. 

2.0  TI Response 

2.1  What Is Hyperspectral Imaging? 

Hyperspectral remote sensing (Figure 1), also known as imaging spectroscopy, is typically used 

to identify terrestrial vegetation, minerals, and land-use/land-cover mapping.  It is based on the 

examination of many narrow-bandwidth spectral channels to identify unique spectral features 

across the electromagnetic spectrum.  A typical hyperspectral scanner records over hundreds of 

narrow-bandwidth channels, which enables the construction of a continuous reflectance 

spectrum for each pixel.  Common applications of hyperspectral remote sensing include: 

• Target Detection:  Given the spectral signature of a target or material, use spectral 

matching algorithms to detect it in a hyperspectral image (HSI) [1–2]. 

• CBRNE Applications:  Use spectral-matching algorithms to detect and identify chemical 

plumes and illicit materials and other signatures for CBRNE threats. 

• Medical Imaging:  Use spectral features to detect diseased tissue and biomarkers for 

disease and to monitor blood flow in human and animal tissue [3–4]. 

• Environmental Monitoring:  Observe atmospheric parameters such as water vapor; cloud 

properties; aerosols; and littoral parameters like estimating chlorophyll, phytoplankton, 

dissolved organic materials, or suspended sediments. 
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2.2  What Is Computational Hyperspectral Imaging? 

As mentioned previously, hyperspectral sensors are often optically and mechanically complex 

systems, making them expensive to build and operate.  An intriguing solution to this challenge is 

to reconstruct hyperspectral data from simpler red, green, blue (RGB) cameras that are based 

on mature technology and easier to operate.  Recent work [6–9] has shown that 

machine-learning (ML) algorithms can be used to learn the mapping from color (RGB) data to 

hyperspectral measurements.  The earlier work [10, 11] is based on dictionary- and 

manifold-learning techniques to reconstruct hyperspectral signatures from three-channel color 

dataError! Reference source not found..  The state of the art [12–14] relies on deep learning 

(DL) neural networks that learn the mapping from color to hyperspectral using training data and 

supervised learning.  Figure 2 provides an illustration of the process of converting HSIs to color 

and reconstructing hyperspectral data from color images.  These reconstruction methods 

obviate the need for expensive and specialized hardware, while providing high spectral 

resolution imagery [15]. 

Figure 1. Illustration of Hyperspectral Remote Sensing [5]. 
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Figure 2.  Illustration of the Process of Converting HSIs to Color and Reconstructing 

Hyperspectral Data From Color Images [16]. 

2.3  Survey of Computational Hyperspectral Imaging Methods 

Algorithms for constructing hyperspectral data from multispectral imagery can be classified into 

two categories:  (1) prior-based and (2) data-driven methods.  The first class of methods 

exploits statistical information in the data to represent and reconstruct the inherent spectral 

attributes of the image.  The data-driven algorithms use training data to learn the mapping 

between color and hyperspectral imagery. 

2.3.1  Prior‑Based Methods 

These methods use linear algebra and optimization theory to estimate high-resolution spectra of 

an image from its color image.  The color and high-resolution spectra are each represented by 

two-dimensional matrices, and the transformation between the two is learned by exploiting prior 

knowledge about the scene. 

There are two classes of such algorithms:  (1) dictionary learning and (2) manifold learning.  

Dictionary learning exploits the spectral and spatial sparsity of hyperspectral data to efficiently 

represent the spectra as a linear combination of basis spectra.  An overcomplete set of basis 

spectra are found by combining prior knowledge of the scene and through dictionary learning 

[17].  Using an overcomplete set ensures that a sparse representation exists, which allows for a 

unique solution to be found via minimization of the L1 loss function. 

Manifold learning also exploits the sparse nature of spectral data.  The sparsity implies that the 

high-dimensional spectral data lie in a lower-dimensional manifold.  The lower-dimensional 

manifold is easier to interpret and analyze.  As an example, for spectral reconstruction [18], a 
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manifold-learning method [19] has been used “to simplify the three-to-many mapping problem 

into a three-to-three problem” [15] via an isometric mapping. 

The performance of prior-based methods suffers from two key problems.  The first is that they 

require prior knowledge about the scene, which limits their use and requires domain expertise.  

The second is that these methods only consider information in the spectral domain and ignore 

the spatial information that is critical and abundant in imagery [15].  As a result, the 

reconstructed spectra often miss key features and the spatial correlations are not maintained. 

2.3.2  Data‑Driven Methods 

Prior-based methods rely on simplifying assumptions and prior knowledge that limit their 

effectiveness.  To address these issues, researchers have developed DL methods that leverage 

large amounts of training data and the state of the art in ML to learn the mapping from color or 

multispectral images to hyperspectral data.  These DL methods can be grouped according to 

the type of networks used to learn the mapping. 

2.3.2.1  Linear Convolutional Neural Network (CNN).  Linear CNN are standard CNN 

architectures that learn the mapping between the input RGB data and the output hyperspectral 

data [15].  More information on linear CNNs can be found in the literature [12, 20–23]. 

2.3.2.2  U‑Net.  U-Net models are based on an encoder/decoder structure.  RGB images are 

input to the encoder to a lower-dimensional latent space.  The decoder then maps the latent 

features to high-dimensional spectral images.  Unfortunately, U-Nets typically emphasize “the 

spatial information and the spectral features are usually ignored or treated as another spatial 

dimension,” thereby lowering the quality of the spectral reconstruction [15]. 

2.3.2.3  The Generative Adversarial Network (GAN).  The GAN is one of the first generative 

AI models for imagery.  It uses game theory to teach a generator (to generate hyperspectral 

images) via a discriminator that is trained to learn the differences between real and 

reconstructed hyperspectral data.  This work was the precursor to attention networks, which are 

the latest generative models used to reconstruct spectral imagery.  More information can be 

found in the literature [24–29]. 

2.3.2.4  Residual and Dense Networks.  These networks utilize deep and densely connected 

layers with skip connections to learn a richer feature representation and mapping between the 

color and hyperspectral imagery [15].  They also have the advantage of increased training 

stability by alleviating the vanishing-gradient problem [30, 31]. 
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2.3.3 Comparison and Analysis 

A summary comparing the pros and cons of prior-based and data-driven methods for spectral 

reconstruction is provided in Table 1. 

Table 1.  Comparing Prior-Based and Data-Driven Methods for Spectral Reconstruction 

Class of 
Algorithms 

Advantages Disadvantages 

Prior Based 

• Directly exploits prior knowledge 

to reconstruct hyperspectral data 

• Can incorporate domain expertise 

into spectral reconstruction 

• Ignores spatial texture and 

information, leading to loss of 

high-frequency features 

• Relies on hand-crafted priors, 

leading to poor generalization 

across sensors and image 

backgrounds 

Data Driven 

• Can exploit spectral and spatial 

features for hyperspectral 

reconstruction 

• Can learn more accurate and 

complex mappings between RGB 

and hyperspectral data by using 

DL 

• By training a single model across 

multiple sensors and datasets, 

can achieve greater 

generalization 

• Requires large amounts of 

training data, which are often 

unavailable 

2.4  Future Research Considerations 

This section discusses network architecture, loss function, resolving dataset issues, and 

learning strategies that may be considered for future research. 

2.4.1  Network Architecture 

A robust model for mapping RGB imagery to hyperspectral data should exploit spatial and 

spectral features, as well as local and global spatial context at various resolutions.  These 

factors go into the design of the network, which is an outstanding research challenge.  For 

example, “combining attention mechanisms of key features can enhance the production of 

interested details [and] the combination of hierarchical structure and attention mechanism can 

make the network more enhanced with feature representation ability” [15]. 

2.4.2  Loss Function 

DL methods are trained to optimize different loss functions, depending upon the problem they 

are trying to solve.  For image reconstruction, most models use the L1 or L2 loss function to 
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minimize the pixel differences between the ground-truth and reconstructed images.  However, 

these models do not consider the spatial context and optimize for each pixel independently.  

This problem is exacerbated when considering the spectral features that need to be accurately 

represented. 

The problem of deriving a cost function that jointly optimizes for the pixel-level, spatial, and 

spectral properties when reconstructing the hyperspectral image has not been sufficiently 

addressed.  This is perhaps the primary outstanding challenge that needs to be resolved for 

accurate spectral estimation. 

2.4.3  Resolving Dataset Issues 

DL models  require large amounts of hyperspectral data.  Such datasets are often not available, 

particularly labeled data with associated color or multispectral imagery.  The performance of DL 

models is known to be brittle and unreliable when trained on limited data. 

To alleviate this problem, two types of data augmentation can be exploited.  The first approach 

leverages spatial information by cropping, flipping, and rotating images that are used to 

augment the training data.  Similar augmentation methods need to be found for the spectral 

domain.  The second strategy is to use simulated hyperspectral data.  By adding synthetic data 

to real data, the amount of training data can easily be increased to help generalize the 

performance of the model.  To minimize the risk of combining synthetic and real data, ML 

models that map synthetic data to real imagery can be utilized, thereby reducing the domain 

shift between the data and helping speed up the convergence of the model during training. 

2.4.4  Learning Strategies 

Supervised learning is the most commonly used approach to train DL methods for hyperspectral 

image reconstruction.  However, they require fully labeled datasets, which is not often possible 

due to the cost of collecting and curating the data.  Unsupervised, semi-supervised, and 

self-supervised learning are well-known approaches to address these challenges.  They can 

help improve the performance of spectral reconstruction algorithms, even with limited fully 

labeled training data. 

2.5  Extending to IR Hyperspectral Imaging 

The latest advances in computational hyperspectral imaging are promising and suggest new 

lines of future work.  For example, the lessons learned for developing these techniques in the 



 

 Distribution Statement A.  Approved for public release:  distribution is unlimited. 7 

 

visible and near-infrared (VNIR) wavelengths can be extended to the short-wave infrared 

(SWIR) and long-wave infrared (LWIR) regimes. 

The network architecture and approaches for training these models should translate well from 

the VNIR to the SWIR.  This is because physics is similar (reflectance spectroscopy).  There 

could be additional considerations when translating to LWIR, since physics is different 

(reflectance vs. emissive). 

The biggest challenge is generating training data.  The availability of SWIR and LWIR sensors is 

clearly more limited when compared to VNIR cameras.  Government organizations will need to 

partner with industry to identify the sensors (both multi- and hyperspectral) that will be 

necessary to concurrently collect enough imagery to train the DL models.  Furthermore, the 

teams will need to investigate the use of synthetic data, as there are well-known 

image-rendering tools that can generate multi- and hyperspectral scenes.  The goal is to use 

these images to augment the training data’s sets.  Another key challenge is to overcome the 

gap between synthetic and real spectral imagery.  Already, there are artificial intelligence tools, 

such as GANs and variational autoencoders that can minimize the distribution shifts between 

real and synthetic data.  These can help improve the quality and quantity of the training data, 

which is critical for the success of these models to reconstruct hyperspectral imagery from 

multispectral imagery. 
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