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INTRODUCTION

A midst the crashing surf 
of a remote coastline, 
two U.S. Navy sailors 

clad in black wetsuits and protective 
helmets carry the MK18 Mod 1 
Swordfish unmanned underwater 
vehicle (UUV) toward the open ocean 
(Figure 1).  With minimal support 
equipment, they navigate the surf 
zone, demonstrating the expeditionary 
capability of deploying UUVs virtually 
anywhere in the world.  Nearby, 
another sailor hunches over a rugged 
laptop, programming the UUV’s 
mission parameters in the open 
air—a testament to the simplicity and 
flexibility of operating these advanced 
systems in austere environments.

This scene unfolded during UNITAS 
LXV, the world’s longest-running 
multinational maritime exercise  
(Figure 2), highlighting the tactical 
proficiency of America’s warfighting 
Navy.  The deployment of the MK18 
Mod 1 Swordfish by Explosive 
Ordnance Disposal Mobile Unit 2 
not only showcased cutting-edge 
technology but also emphasized 
the importance of interoperability 
with allies and partners such as 
Canada, France, and Germany.  Such 
exercises promote peace, stability, and 
prosperity by fostering collaboration 
and enhancing collective maritime 
capabilities (Figure 3).

The MK18 Mod 1 Swordfish’s 
successful deployment underscores the 

transformative potential of UUVs in 
modern naval operations.  Their ability 
to be rapidly deployed and operated 
with minimal logistical support makes 
them ideal assets for a wide range of 
missions, from mine countermeasures 
to intelligence gathering.  This agility 
is critical in today’s fast-paced, 
evolving threat environment.

This article explores how leveraging 
contractor-owned, contractor-operated 
(COCO) services, in combination 
with fleet experimentation like that 
demonstrated during UNITAS LXV, 
can accelerate Programs of Record 
(PoRs) and better align capabilities 
with fleet needs.  By tightening the 
feedback loop between sailors and 
program managers, the Navy ensures 

Figure 1.  UUV Operations (Source:  DVIDS [1]).

Figure 2.  UUV Land Operation at UNITAS LXV (Source:  DVIDS [1]).
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an active role in advancing operational 
requirements.  This approach fosters 
innovation, enhances operational 
effectiveness, and positions the Navy 
to meet current and future challenges 
with agility and precision.

Evolving Needs in Capability 
Development

The U.S. Department of the Navy has 
a longstanding tradition of innovation 
and excellence in fielding critical 
systems that safeguard the nation’s 
interests.  Its traditional acquisition 
processes have been instrumental 
in delivering robust and reliable 
capabilities that have served well over 
the years.  These processes ensure 
thorough evaluation, accountability, 
and adherence to high standards, 
which are essential for mission success 
and the safety of Navy personnel.

However, the rapidly changing 
technological landscape and 

emergence of new threats presents 
an opportunity to enhance existing 
processes.  As technology evolves at 
an unprecedented pace, the methods 
for developing and deploying new 
capabilities must also evolve.  By 
building upon the strong foundation 
of the current acquisition framework, 
more agile and responsive approaches 
can be integrated to effectively meet 
today’s challenges.

One area that can be advanced is 
optimizing development timelines.  
While thoroughness is crucial, 
exploring ways to streamline certain 
aspects of the acquisition process can 
help bring cutting-edge technologies 
to sailors more quickly.  This does 
not mean compromising on quality 
or safety but finding efficiencies 
that allow faster integration of new 
solutions without sacrificing rigor.

Additionally, introducing greater 
flexibility into the processes can 

enhance the ability to adapt to 
emerging technologies and evolving 
operational requirements.  By 
complementing structured acquisition 
methods with more dynamic strategies, 
response to new opportunities can be 
swift and capabilities remaining at the 
forefront of innovation can be ensured.

Strengthening the alignment between 
program development and fleet needs 
is another avenue for positive growth.  
By fostering closer collaboration 
and open communication between 
program managers, industry partners, 
and the sailors who will ultimately 
employ these systems, the capabilities 
developed to address the most pressing 
operational challenges can also be 
ensured.

In embracing these enhancements, 
maintaining the excellence of these 
acquisition processes while making 
them more agile and responsive is the 
goal.  This balanced approach allows 
continued deliverance of superior 
capabilities that empower sailors and 
keep them ahead in an ever-changing 
global landscape.

The Need for Agility in 
Modern Warfare

Modern warfare is evolving at an 
unprecedented pace, driven by 
rapid advancements in technology 
and shifting battlefield dynamics.  
Unmanned systems and artificial 
intelligence (AI) are at the forefront 
of this transformation, redefining 

Figure 3.  UUV Familiarization Training (Source:  DVIDS [1]).
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how conflicts are conducted and 
highlighting the critical need for agility 
in capability development.

As drone technology evolves, so do the 
strategies employed on the battlefield.  
Unmanned systems offer significant 
advantages, including reduced risk 
to personnel, enhanced surveillance 
capabilities, and the ability to respond 
rapidly to emerging threats.  The 
statement “the future of warfare is 
here, and it’s unmanned” resonates 
strongly in this context, emphasizing 
the immediate impact of these 
technologies on modern conflicts.

This evolving landscape underscores 
the importance for the Navy to adopt 
more agile approaches to capability 
development.  By embracing flexibility 
and innovation, the Navy can ensure 
that it remains ahead of emerging 
threats and continues to provide 
sailors with the most advanced tools 
available.  Agile development processes 
allow quicker integration of new 
technologies like unmanned systems 
and AI, ensuring operational readiness 
and maintaining technological 
superiority.

Incorporating lessons from real-world 
examples, such as the use of drones 
in Ukraine, highlights the necessity of 
adapting our acquisition strategies.  By 
fostering agility, the Navy can better 
align its capabilities with the fast-paced 
nature of modern warfare, ensuring 
that it is prepared to meet current and 
future challenges with confidence and 
precision.

THE ROLE OF FLEET 
EXPERIMENTATION
Testing, learning, and improving are 
crucial for advancing naval capabilities, 
thus allowing the following:

•	Real-World Testing:  Operational 
environments provide valuable data 
on system performance, usability, 
and reliability.

•	Rapid Feedback Loops:  Direct 
input from sailors enables program 
managers to make informed 
decisions quickly.

•	Iterative Improvement:  
Continuous testing and learning lead 
to refined systems that better meet 
operational needs.

By integrating experimentation into 
the capability development process, 
the Navy can provide the following 
benefits:

•	Accelerate Innovation:  Quickly 
identify and adopt emerging 
technologies. 

•	Enhance Relevance:  Ensure that 
capabilities are directly aligned with 
fleet needs.

•	Reduce Risk:  Validate concepts 
and technologies before full-scale 
acquisition.

LEVERAGING COCO 
SERVICES
COCO services represent a 
collaborative model where contractors 
own and operate equipment or provide 
services, delivering capabilities directly 
to the Navy without the need for the 
government to procure the assets 
outright.  This approach offers the 
following key advantages:

•	Flexibility:  Contractors can 
rapidly design, experiment, and test 
ideas independently, allowing swift 
adaptation to emerging technologies 
and operational needs.

•	Cost Efficiency:  With reduced 
government oversight, timelines 
accelerate and administrative costs 
decrease, leading to more efficient 
use of resources.

•	Innovation:  By encouraging 
industry partners to bring 
forward cutting-edge solutions, 
the Navy benefits from the latest 
advancements without bearing the 
full burden of development risks.

COCO services provide the following 
advantages: 

Modern warfare is evolving 

at an unprecedented pace, 

driven by rapid advancements 

in technology and shifting 

battlefield dynamics.
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•	Speed of Implementation:  
Vendors can iterate quickly 
without being hindered by lengthy 
government approval processes.  
This agility enables the Navy to field 
new capabilities more rapidly in 
response to evolving threats.

•	Reduced Costs:  Lower requirements  
for government-funded testing and 
oversight translate into significant 
cost savings.  Funds can be 
redirected toward other critical areas 
without compromising capability 
development.

•	Enhanced Collaboration:  Strong 
partnerships between the Navy and 
industry are fostered, leveraging 
external expertise and promoting a 
shared commitment to advancing 
naval capabilities.

Case Study:  Unmanned 
Underwater Vehicles in 
BALTOPS 24 [2]

A recent example highlighting the 
effectiveness of COCO services 
occurred during BALTOPS 24, the 
world’s longest-running multinational 
maritime exercise.  The Royal 
Netherlands Navy deployed a yellow 
UUV from one of their ships to 
investigate underwater contacts as 
part of mine countermeasure training 
(Figure 4).

This deployment showcased the 
following important aspects:

•	Operational Value:  The UUV 
operated effectively in a real-world 

training environment, demonstrating 
its capability to enhance mine 
detection and clearance operations.

•	Rapid Deployment:  The ability to 
launch the UUV swiftly during an 
international exercise underscored 
the flexibility and speed that COCO 
services could provide.

•	Industry and International 
Collaboration:  The exercise 
highlighted how contractors, allied 
navies, and partners were willing 
and able to collaborate, bringing 

forward innovative technologies 
that enhanced collective maritime 
security.

By integrating COCO services into 
such exercises, the Navy and its 
partners can evaluate new technologies 
in operational settings without the 
need for immediate procurement.  This 
approach allows assessing capabilities, 
identifying any limitations, and 
gathering valuable feedback from 
operators.

The Triton UUV and 
Combined Task Force  
(CTF) 59 Operations

Another compelling example is  
the Triton UUV’s operations in  
the Arabian Gulf.  Despite the 
government not purchasing Tritons 
specifically for these activities, 
Ocean Aero demonstrated the UUV’s 
capabilities through fleet exercises  
and demonstrations coordinated 

A recent example highlighting 

the effectiveness of COCO 

services occurred during 

BALTOPS 24, the world’s 

longest-running multinational 

maritime exercise.

Figure 4.  Sea Scan Underwater Drone (Source:  DVIDS [2]).
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by CTF 59 [3].  This collaboration 
showcased the following:

•	Proven Endurance:  The Triton 
UUV operated for extended periods, 
validating that long-duration 
unmanned systems could function 
reliably in challenging maritime 
environments.

•	Unified Control Systems:  CTF 59  
successfully integrated multiple 
unmanned platforms, controlling 
various UUVs from a single 
interface.  This capability enhanced 
operational efficiency and situational 
awareness.

•	Industry Engagement:  Contractors 
proactively participated to prove the 
potential value of their technologies, 
reinforcing the benefits of COCO 
services in advancing naval 
capabilities.

INTEGRATING COCO 
SERVICES WITH PoRs
It is a connection most glossed over, 
but when COCO services are viewed 
as a path to rapid PoR advances, new 
and useful opportunities are presented. 
Understanding the flexibility of COCO 
services is key to using these services 
to rapidly advance PoRs.

Bridging the Gap Between 
Experimentation and 
Acquisition

To fully harness the benefits of COCO 
services, it is crucial to understand 

how they can transition into formal 
PoRs.  The REMUS 300 UUV 
serves as an excellent example of a 
commercial system that bridges this 
gap.  Developed by Huntington Ingalls 
Industries (HII), the REMUS 300 is 
being used to establish a PoR and 
could further benefit from COCO 
services to implement incremental 
improvements [4].

Key considerations in this transition 
include the following:

•	Data Rights:  Ensuring that the  
Navy has access to essential data  
generated during COCO operations  
is vital.  This data supports 
evaluation, informs future 
development, and ensures that  
any enhancements align with Navy 
requirements.

•	Test and Evaluation Requirements:  
Establishing clear protocols for 
testing and validating performance 
is necessary to ensure that systems 
meet operational standards and are 
suitable for deployment.

•	Quality Evidence Requirements:  
Gathering objective and quantifiable 
data provides the evidence needed 
to support acquisition decisions 
and justifies the integration of new 
capabilities into PoRs.

Enhancing the Acquisition 
Process

Integrating COCO services with PoRs 
offers several advantages that enhance 
the traditional acquisition process:

•	Informing PoRs:  COCO services 
provide real-world operational 
data and direct fleet feedback.  For 
instance, using the REMUS 300 
in COCO arrangements allows 
sailors to operate the system in 
various missions such as mine 
countermeasures, data collection, and 
search and rescue.  Their experiences 
help shape requirements and 
specifications for PoRs.

•	Reducing Risks:  Early identification  
and mitigation of potential issues 
are possible when systems are 
tested extensively in operational 
environments.  Incremental 
improvements made through COCO 
services can be evaluated before 
formal incorporation into PoRs, 
reducing development risks.

•	Accelerating Timelines:  By 
utilizing commercial systems, which 
are already operationally viable, the 
Navy can shorten the path from 
concept to deployment.  COCO 
services facilitate rapid iteration 
and integration of new technologies 
without the delays often associated 
with traditional procurement 
processes.

Ensuring Alignment With 
Fleet Needs

Direct involvement of the fleet in 
experimentation ensures that the 
following capabilities developed are 
precisely what sailors require:

•	Operational Relevance:  Systems 
are tested and validated by end 
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users in real-world scenarios.  
For example, during mine 
countermeasure operations, sailors 
can assess the UUV’s effectiveness 
and suggest enhancements based on 
firsthand experience.

•	Responsive Development:  
Feedback from sailors operating 
COCO systems can lead to quick 
adjustments and incremental 
improvements.  HII’s recent unveiling  
of the REMUS 130, built on the 
same platform as the REMUS 300,  
exemplifies how industry can respond  
to operational feedback by offering 
vehicles with reduced cost and risk 
while maintaining high capability.

•	Active Navy Role:  By engaging 
directly with contractors through 
COCO services, the Navy maintains 
ownership of capability development 
priorities.  This active role ensures 
that advancements align with 
strategic objectives and operational 
requirements.

Case Study:  The REMUS 300 
and PoR Establishment

The REMUS 300’s journey from 
a commercial UUV to its role in 
establishing a PoR illustrates the 
effective integration of COCO services 
as follows:

•	Commercial Foundation:  The 
REMUS 300, a small UUV 
measuring between 6 to 12 ft long 
and 7 1/2 inches in diameter, is 
designed for versatility in missions 
like data collection, offshore 

exploration, search and rescue, and 
mine countermeasures.

•	Incremental Improvements:  
HII’s introduction of the REMUS 
130, based on the proven REMUS 
300 platform, demonstrates how 
incremental enhancements can be 
developed in response to customer 
needs.  

•	Establishing the Lionfish UUV:  
The REMUS 300 is also the 
commercial system being utilized  
by HII to develop and manufacture 
the Navy’s new Lionfish UUV.   
This progression from a commercial 
product to a tailored military 
asset underscores the potential 
of leveraging COCO services for 
capability development.

BENEFITS OF A COMBINED 
APPROACH
Integrating COCO services with 
traditional PoRs offers a multitude 
of benefits that enhances the Navy’s 
capability development process.  This 
combined approach leverages the 
strengths of both models to deliver 
advanced capabilities more efficiently 
and effectively.

Increased Agility and 
Responsiveness

•	Adapts to Emerging Threats:  By 
utilizing COCO services, the Navy 
can rapidly develop and deploy new 
technologies to address evolving 

challenges.  For example, the 
deployment of unmanned systems 
like the MK18 Mod 1 Swordfish 
during UNITAS LXV and the 
REMUS 300 UUV allows for swift 
integration of advanced capabilities 
to counter modern threats.

•	Facilitates Flexible Contracting:  
COCO services enable the Navy 
to adopt diverse contracting 
strategies tailored to specific needs.  
This flexibility facilitates quicker 
procurement and deployment of 
essential technologies, ensuring that 
operational units have access to the 
tools they require without delay.

Improved Alignment and 
Relevance

•	Directly Addresses Fleet Needs:  
Involving sailors directly in the 
experimentation and development 
process ensures that capabilities 
are closely aligned with actual 
operational requirements.  The 
hands-on use of UUVs like the 
REMUS 300 and the MK18 Mod 
1 by fleet personnel provides 

Integrating COCO services 

with traditional PoRs offers 

a multitude of benefits 

that enhances the Navy’s 

capability development 

process.
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immediate feedback, allowing 
adjustments that meet the specific 
needs of the fleet.

•	Enhances Effectiveness:  Systems 
developed through this collaborative 
approach are more likely to perform 
as required in real-world scenarios.  
The practical experience gained from 
exercises like BALTOPS 24, where 
unmanned underwater vehicles were 
deployed for mine countermeasure 
training, demonstrates the 
operational effectiveness of these 
systems.

Cost Savings and Efficiency

•	Reduces Development Costs:  
Streamlined processes inherent 
in COCO services eliminate 
unnecessary expenses associated with 
traditional acquisition methods.  By 
leveraging commercial off-the-shelf 
technologies and industry expertise, 
the Navy can reduce research and 
development costs significantly.

•	Efficiently Uses Resources:  
Focusing funding on high-impact 
areas ensures that resources are 
utilized where they can make the 
most difference.  The incremental 
improvements made to systems 
like the REMUS 300, leading to 
the development of the REMUS 
130, exemplify efficient resource 
allocation that meets mission needs 
without excessive expenditure. 
 

Enhanced Collaboration and 
Innovation

•	Partners With Industry:  COCO 
services foster strong partnerships 
between the Navy and private 
sector companies.  By leveraging 
advancements and expertise from 
industry leaders like HII, the 
Navy benefits from cutting-edge 
technologies and innovative solutions 
that might not be readily available 
through traditional procurement 
channels.

•	Fosters an Innovation Culture:  
Encouraging creative problem-
solving and adopting new 
technologies becomes a natural 
outcome of this combined approach.  
The agile development seen in the 
use of first-person-view drones by 
operators in Ukraine highlights 
how embracing new methodologies 
can lead to significant tactical 
advantages.

ADDRESSING 
CHALLENGES AND 
MITIGATING RISKS
While the combined approach of 
integrating COCO services with PoRs 
offers substantial benefits, it is essential 
to recognize potential challenges and 
implement strategies to mitigate risks 
effectively.  Such challenges include the 
following:

•	Misappropriation Concerns:  
Ensuring the proper use of funds 

and resources is crucial.  Without 
adequate oversight, there is a risk of 
misaligned priorities or inefficient 
use of financial resources.

•	Unfunded Requirements:  
Successful demonstrations 
and experiments may lead to 
identifying capabilities that lack 
allocated budgets for full-scale 
implementation, potentially causing 
gaps in operational readiness.

•	Testing Considerations:  Robust 
protocols are necessary to validate 
the effectiveness and reliability of 
new systems.  Without standardized 
testing, there may be inconsistencies 
in performance or unforeseen issues 
during deployment.

•	Program Configuration 
Management:  Maintaining 
consistency with broader program 
objectives is vital.  Changes or 
improvements made through COCO 
services must be carefully managed 
to ensure they align with the overall 
goals and do not disrupt existing 
configurations.

Strategies for mitigation are as follows:

•	Clear Guidelines and Oversight 
Mechanisms:  Implementing 
comprehensive frameworks for 
accountability ensures that all parties 
understand their responsibilities.  
Establishing clear contracts and 
expectations with industry partners 
helps maintain focus and proper use 
of resources. 
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•	Phased Funding Approaches:  
Allocating resources based on 
milestones and performance allows 
better financial control.  By tying 
funding to specific achievements, 
the Navy can ensure that 
investments lead to tangible results 
without overcommitting resources 
prematurely.

•	Collaboration With Program 
Managers:  Close coordination 
between COCO service providers 
and program managers ensures 
alignment with overall program 
goals.  Regular communication and 
joint planning help integrate new 
capabilities smoothly into existing 
structures.

•	Standardized Testing Protocols:  
Establishing consistent evaluation 
methods guarantees that all new 
systems meet required standards.  
Developing and adhering to rigorous 
testing procedures reduces the risk 
of deploying unproven technologies 
and enhances overall reliability.

CONCLUSIONS
The landscape of modern warfare 
is rapidly evolving, driven by 
technological advancements and 
emerging threats that demand agility, 
innovation, and swift adaptation.  The 
Navy stands at a pivotal juncture 
where embracing new methodologies 
can significantly enhance its 
operational effectiveness and maintain 
its strategic edge.

By integrating COCO services with 
traditional PoRs, the Navy can leverage 
the best of both worlds—harnessing 
industry innovation and flexibility 
while maintaining the rigorous 
standards and oversight that ensure 
mission success and safety of its 
personnel.  This combined approach 
offers the following benefits:

•	Increased Agility and 
Responsiveness:  The ability to 
rapidly develop and deploy new 
technologies allows the Navy 
to address emerging challenges 
promptly.  Flexible contracting 
strategies enable tailored solutions 
that meet specific operational needs 
without unnecessary delays.

•	Improved Alignment and 
Relevance:  Direct involvement of 
sailors in experimentation ensures 
that capabilities are developed with 
immediate operational input.  This 
hands-on engagement enhances the 
likelihood that systems will perform 
as required in real-world scenarios, 
directly addressing the fleet’s needs.

•	Cost Savings and Efficiency:  
Streamlined processes inherent in 
COCO services reduce development 
costs and focus funding on high-
impact areas.  Efficient use of 
resources ensures that the Navy can 
invest in critical capabilities without 
excessive expenditure.

•	Enhanced Collaboration and 
Innovation:  Strong partnerships 
with industry leverage private 
sector advancements and expertise.  

Fostering a culture of innovation 
encourages creative problem-solving 
and the adoption of cutting-edge 
technologies.

The examples discussed—from the 
deployment of the MK18 Mod 1 
Swordfish during UNITAS LXV to 
the incremental improvements of the 
REMUS 300 UUV—illustrate the 
tangible benefits of this integrated 
approach.  These cases highlight how 
the Navy can rapidly field advanced 
capabilities, improve operational 
readiness, and stay ahead of adversaries 
who are also leveraging technology to 
their advantage.

However, it is essential to recognize 
and address potential challenges 
associated with this approach.  
Implementing clear guidelines, robust 
oversight mechanisms, phased funding, 
and standardized testing protocols 
ensures that risks are mitigated 
effectively.  Close collaboration 
between program managers, industry 
partners, and operational units 
maintains alignment with broader 
objectives and sustains the integrity  
of capability development efforts.

THE PATH FORWARD
Embracing the integration of COCO 
services with PoRs represents a 
strategic imperative for the Navy.  
This approach not only accelerates 
capability development but also 
strengthens the Navy’s active role in 
advancing operational requirements.  
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By fostering agility, enhancing 
collaboration, and prioritizing 
innovation, the Navy positions itself to 
meet the demands of modern warfare 
confidently and effectively.

Moving forward, the Navy should 
continue to do the following:

•	Promote Agile Development 
Practices:  Encourage the adoption 
of flexible methodologies that allow 
rapid iteration and deployment of 
new technologies.

•	Strengthen Industry Partnerships:  
Cultivate relationships with industry 
leaders to leverage expertise and 
stay abreast of technological 
advancements.

•	Enhance Fleet Engagement:  
Involve sailors directly in the 
development and experimentation 
process to ensure capabilities align 
with operational realities.

•	Implement Robust Governance:  
Establish frameworks that balance 
innovation with accountability, 
ensuring that resources are used 
efficiently and effectively.

By committing to these principles,  
the Navy can navigate the complexities 
of today’s security environment, 
maintaining technological superiority 
and operational excellence.  The 
integration of COCO services with 
traditional acquisition processes is not 
just an opportunity but a necessity to 
ensure that the Navy remains agile, 
responsive, and prepared to face the 
challenges of the future. 
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INTRODUCTION

M arine and aerospace 
vessels have stringent 
flammability 

requirements, defined through the 
American Society for Testing and 
Materials (ASTM) E1354 Cone 
Calorimetry standard [1], to protect 
those onboard Navy vessels in case 
of fire emergencies.  The ASTM 
E1354 cone calorimeter experiment 
is a standardized method used to 
evaluate the fire behavior of materials 
by measuring parameters such as heat 
release rate, smoke production, and 
mass loss.

In this procedure, a small, square 
specimen is placed horizontally 
beneath a conical radiant heater, which 
emits a controlled heat flux, typically 
ranging from 10 to 100 kW/m².  An 
ignition source like a spark igniter is 
applied to initiate combustion once 
the specimen reaches its ignition 
temperature.  Combustion gases 
are collected through an exhaust 
system, where oxygen consumption is 
measured.  This allows calculating the 
heat release rate based on the principle 
that a known amount of energy is 
released per unit of oxygen consumed.  
Additional sensors monitor parameters 
like carbon monoxide and carbon 
dioxide production, smoke density, and 
mass loss rate to assess the material’s 
flammability characteristics under 
controlled conditions.

The search for novel, low-flammability 
polymers has historically been an 

experimentally intensive effort due 
to the large amounts of potential 
formulations, synthesis, and testing 
required for characterizing their 
flammability performance via the 
ASTM E1354 standard [1, 2].   
Machine-learning (ML) and deep-
learning (DL) methods have proven  
to be effective in screening molecules  
for properties unrelated to flammability  
but have not yet been used for predicting  
the ASTM E1354 standard properties 
based on the molecular structure of the  
polymers of interest [3, 4].  The search 
for novel polymer formulations with 
improved flammability performance 
begins with the molecular structure of 
the polymer; thus, there is a strong  
interest in being able to computationally  
predict their performance due to the 
extreme amount of potential polymer 
compositions.

This work combined atomistic density 
functional theory (DFT) simulations 
and cheminformatics to predict 
experimental cone calorimetry results 
through six different ML and DL 
models.  By creating models based on 
molecular data, efficient screening of 
new potential polymer candidates by 
sidestepping the cost-intensive task 

of experimental determination of 
polymer flammability properties for 
novel formulations with improved 
performance has been shown.  The 
ML tasks involved predicting four 
variables defined in ASTM E1354—
peak heat release rate (PHRR), average 
heat release rates (Avg. HRR) at 
180 and 300 s, and time to ignition 
(TTI).  An ensemble of six ML 
models was trained on a corpus of 
two experimental cone calorimetry 
databases using both features obtained 
from DFT simulations of the relevant 
polymers and those generated using 
cheminformatics methods.

Developing flame-resistant polymers 
is an ongoing necessity toward 
facilitating safe operating conditions 
for Navy and U.S. Department of 
Defense (DoD) personnel across all 
sectors.

METHODS
ML/DL methods are as effective as the 
data that they train on. Thus, collecting 
and cleaning high-quality data are 
imperative to developing accurate 
models of flammability properties.  
In this section, the datasets used for 
training the ML/DL models in this 
work are described.

Datasets

Two datasets were used for training 
ML models for predicting PHRR, 
TTI, and Avg. HRR at 180 and 300 s.  
They are summarized in the following 
subsections.

Machine-learning and deep-

learning methods have proven 

to be effective in screening 

molecules for properties 

unrelated to flammability.
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Federal Aviation Administration 
(FAA) Cone Calorimetry Database

This experimental dataset collected 
by the FAA contained 211 full cone 
calorimetry experiments for various 
polymers—19 unique neat resins 
were observed in this dataset.  Most 
of the polymers had multiple tests 
for each composition except for 
polyphthalamide, which only had 
one cone calorimeter experiment 
data available.  The polymer having 
the most data available was the PT-
30 phenolnovolac cyanate ester 
composition, with 28 experimental 
samples.  With polymer compositions 
ranging from polyethylene (having 
the least desirable flammability 
properties) to those of the bisphenol 
C cyanate (the most desirable, 
having passed MIL-STD-2031 [5]), 
the dataset broadly covered the 
range of flammability properties 
seen in currently known polymer 
compositions.

Texas A&M University (TAMU) 
Dataset

Prof. Wang of TAMU built a flame-
retardancy database of more than 
800 polymeric nanocomposites, 
including information from polymer 
flammability, thermal stability, and 
nanofiller properties [6].  This  
dataset was included to account 
for the varying types of fillers and 
additives that can affect flammability 
characteristics.

Synthetic Data Generation

DL and ML models greatly benefit 

from having a large amount of 
data to train on.  This naturally 
conflicts with the high cost of 
performing a large amount of physical 
experiments to create data to train 
these models.  Significant effort was 
put into hyperparameter tuning of 
the previously mentioned models 
to predict PHRR, TTI, and Avg. 
HRR at 180 and 300 s.  In addition, 
studies on generating synthetic data 
were performed by using generative 
adversarial networks (GANs) 
specialized for generating data to 
mimic the distribution of the training 
data to smooth out the distribution of 
the dataset.

For each polymer composition, 
the monomer was converted to a 
simplified molecular-input line-
entry system (SMILES) string 
representation.  This was chosen, as 
most cheminformatics methods for 
feature generation were based on  
this representation.  The Mordred 
library was chosen for feature 
generation, allowing the generation 
of ~2000 features for each molecule 
as a unique fingerprint to link to 
its flammability characteristics 
[6].  Such fingerprints are common 
in developing models that predict 
molecular properties and behaviors, 
such as biological activities and 
physical-chemical properties, which are 
fundamental in drug design and other 
chemical informatics applications.  
Mordred generates features either 
based on two- or three-dimensional 
representations of the molecule.

By providing these extensive and 
efficiently calculated descriptors, 
Mordred provided a wide range 
of features for this application, 
particularly since these features 
proved to be effective in quantitative 
structure-activity relationship and 
quantitative structure-property 
relationship modeling.  Its ability 
to generate a comprehensive set of 
molecular descriptors, coupled with its 
open-source accessibility and ease of 
use, made it a good fit for this work.

Model Training

Due to the limited amount of data 
available, a 95%–5% train-test 
split was chosen.  Five-fold cross- 
validation was performed during 
training to mitigate overfitting.  An 
ensemble of both classical and DL 
models was trained to compare their 
performance in predicting polymer 
flammability properties.  These 
models were the Linear Regressor, 
Decision Tree Regressor, Deep Neural 
Network, Extreme Gradient Boosting 
(XGB) regressor (XGBoost), and 
Random Forest, as implemented in 
the Scikit Learn package.  Specific 
implementation details for the 
algorithms are as follows:

•	Two architectures for the deep 
neural network were explored—one 
with three hidden layers and one 
with six.  For the network with three 
hidden layers, 256, 128, and 64 
neurons were used for each layer.  
Rectified Linear Unit (ReLU) was 
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chosen as the activation function for 
the neurons.  The Adam optimizer 
was used for training the model with 
a learning rate of .001, and training 
was performed for 500 epochs.

•	The DL network with six layers was 
tested with 512, 256, 128, 64, 32, 
and 5 neurons per layer.  ReLU was 
chosen as the activation function for 
the neurons.  The Adam optimizer 
was used for training the model 
with a learning rate of .001 and was 
trained for 50 epochs.

•	The XGBoost algorithm was trained 
with the Squared Error objective 
function.  All other parameters were 
left as defaults.

•	The random forest model had 100 
splits, with all other parameters left  
as defaults.

A simplified overview of the models 
used in this project is provided in the 
Discussion and Results section.

DFT Calculations

DFT calculations were performed 
using the CP2K simulation suite.  
Geometric optimization and 
electronic optimization calculations 
were performed for each of the 
unique polymer compositions in 
the FAA dataset.  These simulations 
were performed using the Becke, 
three-parameter Lee-Yang-Parr 
(B3LYP) functional at the 6-31g** 
(split-valence double-zeta basis set, 
including polarization functions) level 
of theory.  Performance was tested 

using central processing unit (CPU) 
and graphics processing unit (GPU) 
acceleration.  Results showed that the 
boosts to performance on GPU were 
not relevant for the relatively small 
molecules studied.  Therefore, these 
simulations were performed using an 
AMD EPYC 7413 CPU rather than an 
NVIDIA A100 GPU.

DISCUSSION AND 
RESULTS

Model Selection on the FAA 
Cone Calorimetry Dataset

After implementing these models, 
regression evaluation metrics were 
chosen to downselect across the 
models.  The regression metrics 
included mean squared error (MSE), 
square root of MSE (RMSE), mean 
absolute error (MAE), and coefficient 

of determination (R2).  For MSE, 
RMSE, and MAE, lower values were 
desired.  For an R2 score, higher was 
desirable.  Metrics were averaged over 
several target variables, which were 
PHRR, average heat release rate (HRR) 
at 180 s, average HRR at 300 s, time 
to sustained ignition, and average 
specific extinction area.

Broadly, the limitations in the amount 
of data available significantly hindered 
the accuracy of the model across all 
metrics, despite the use of molecular 
fingerprints.  Using MAE as a target 
metric, XGB and Random Forest 
performed best.  Using R2 as a target 
metric, Random Forest and Linear 
Regression performed best.  These 
results are shown in Figure 1, where 
comparing ML models with different 
metrics averaged over several target 
variables on the FAA data.  R2 was 0.7 
when averaging over several factors 

Figure 1.  Predictions on the FAA Dataset (Source:  G. M. Nishibuchi).
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like polymer type; external heat flux 
and metrics such as peak heat release, 
time to ignition and char formation; 
and up to R2 of 0.93 for XGB on an 
average heat release at 300 s.

Decision trees, Random Forest, and 
XGB are similar algorithms, and 
XGB is often used in literature.  For 
this reason, experiments with XGB 
continued in this analysis.

Feature Selection:  Training 
With and Without DFT 
Features

Limitations were necessary on the 
amount of data that could be obtained 
from the DFT calculations regarding 
whether the highest energy occupied 
molecular orbital (HOMO)-lowest 
energy unoccupied molecular orbital 
(LUMO) gap and free energies 
from the DFT calculations made 
a meaningful impact on model 
performance.  Thus, model training 
was performed with and without 
DFT features.  With the DFT features 
included, MSE, RMSE, and MAE all 
rose and R2 scores fell (Figure 2).

Tree-based models like XGBoost can 
generate feature importance values, 
which track how many times a feature 
is used to split a node in the decision 
tree.  Each split reduces the Gini 
impurity, thus reducing the likelihood 
of the model selecting a random point 
in the dataset.  The features with the 
highest amount of attributed splits 
can be considered the most important 
toward making a correct prediction.

Figure 3 shows the 10 highest 
importance Mordred features for 
PHRR (left) and TTI (right).  Mordred 
features can be difficult to describe 
succinctly (e.g., GATS3are is the Geary 
coefficient of lag 3 weighted by Allred-
Rochow electronegativity) but are 
understood by computational chemists 
and repeatable.

Figure 2.  Comparison of Models Averaged Over Several Target Variables on the FAA 
Data  (Source:  G. M. Nishibuchi).

Figure 3.  Feature Importance Across a Subset of Mordred Features for PHRR (Left) and TTI (Right) (Source:  G. M. Nishibuchi).
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Synthetic Data Generation 
Effects on Prediction Metrics

GANs are ML algorithms that 
generate synthetic data mimicking real 
data.  A GAN consists of two neural 
networks—the generator and the 
discriminator.  The generator creates 
fake data from random noise, aiming 
to produce data indistinguishable from 
real data.  The discriminator evaluates 
both real and fake data, attempting 
to distinguish between them.  The 
generator and discriminator are 
trained simultaneously in an 
adversarial process.  The generator 
improves by creating more realistic 
data to fool the discriminator, while 
the discriminator enhances its ability 
to detect fake data.  GANs have been 
applied successfully in various fields, 
including image and video generation, 
text creation, and data augmentation, 
due to their ability to generate high-
quality synthetic data.  While stable 
diffusion has generally taken over 
the image generation space (e.g., the 
DALL-E series of models), GANs have 
proven effective in the domain of 
generating tabular data.

A variety of synthetic tabular data 
generation models was tested, 
including variational autoencoders, 
diffusion models, CTGANs, triplet-
based VAE, bootstrapping, and a 
Gaussian copula synthesizer.  A dataset 
containing ~36,000 samples was 
created based off the data contained 
in the FAA database and significantly 
improved the performance across 

multiple ML and DL models, with 
metrics shown in Figure 4.

Composite Prediction

Composites of multiple polymers are 
a particularly difficult problem for 
predicting polymer flammability due 
to the limited amount of data existing 
for the neat resins alone.  However, 
composites often provide favorable 
material properties compared to the 
properties of the individual neat resins; 
thus, it is necessary to predict the 
flammability characteristics of polymer 
composite systems.  A methodology for 
predicting the properties of polymers 
was formulated as a weighted sum of 
the properties of the components of a 
composite or a polymer with additives.  
The calculation is formalized as 
follows:

 ,       (1)

where Pcomposite is the composite 
property of interest (PHRR, TTI, etc.), 
Presin,i is the predicted property of the 
individual polymer component, Wi is 
the mass percentage of the polymer 
component, PFR,j is the predicted 
property for a flame retardant/additive, 
and Wj is the mass percentage of the 
flame retardant/additive.  This allows 

Composites of multiple 

polymers are a particularly 

difficult problem for 

predicting polymer 

flammability due to the 

limited amount of data 

existing for the neat resins 

alone.

Figure 4.  Comparison of Model Metrics for Predicting PHRR With (Top) and Without 
(Bottom) Synthetic Data (Source:  G. M. Nishibuchi).
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the user to get a sense of the range 
of potential predictions and decide 
which values are best to use/not use 
(e.g., in the case of an obvious outlier).  
This also helps in identifying which 
models struggle with predicting certain 
parameters so the user can choose 
to retrain the models on different/
altered data to improve performance 
or choose a different model for 
predictions.

Study on Polymers With 
Flame Retardants (FRs) and 
Fillers

TAMU’s Prof. Wang developed a 
dataset of polymer flammability before 
and after the addition of FRs.  The 
TAMU dataset was used to predict the 
flame retardancy index (FRI), TTI, total 
heat release (THR), and PHRR given 
several input features.  Raw features 
and custom features were combined 
as input variables to improve model 
performance.  The features in the 
dataset are explained as follows:

•	Flammability:  Baseline 
flammability of the pure polymer.

•	TGAP:  Thermal stability of the pure 
polymer.

•	Nanofiller loading (wt):  Amount 
of nanofiller added.

•	dTGA:  Change in thermal stability 
due to nanofiller.

•	Dimension:  Shape and form factor 
of the nanofiller.

•	Type:  Material composition of the 
nanofiller.

•	IFR:  Presence of intumescent flame 
retardant.

The custom features are given as 
follows:

•	Average TGA:  Average of the 
TGA values before and after flame-
retardant treatment.

•	Polymer and Type:  Combines the 
polymer type and another categorical 
feature and type into a single feature, 
creating a combined categorical 
feature that uniquely identifies the 
combination of polymer type and 
another characteristic.

•	IFR Flammability Ratio:  Ratio 
of flammability to the presence of 
an intumescent flame retardant.  
The ratio aims to quantify the 
flammability relative to the 
presence of an intumescent flame 
retardant.  Adding 1 to the IFR 
value ensures the denominator is 
never zero, preventing division 
errors.  This feature can highlight 
how flammability changes with and 
without the flame retardant.

•	Flammability:  Represents the 
flammability measurement of the 
sample.

•	IFR:  A binary feature indicating  
the presence (1) or absence (0) of  
an intumescent flame retardant.

•	Polymer and Incorporated 
Nanoparticles:  Combines the 
polymer type and the type of 
incorporated nanoparticles into a 
single feature, creating a combined 
categorical feature that uniquely 

identifies the combination of 
polymer type and incorporated 
nanoparticles.  This can capture 
the specific interactions between 
the polymer and the type of 
nanoparticles used, which could  
be relevant for the model.

Using these input variables, models 
were trained to predict the following 
target variables:  After FR TTI, PHRR, 
THR, and FRI.  Regression metrics 
across the trained models and averaged 
over several target variables on the 
TAMU dataset are shown in Figure 5.  
Performance was acceptable, with up 
to a 0.8 R2.

XGB outperformed all other models in 
terms of MSE, RMSE, MAE, and R2.   
As with the FAA dataset, feature 
importance was also examined.  Using 
a Random Forest classifier, which is 
similar to XGB, the feature importance 
for each target variable was shown.  
Before FR TTI, PHRR and THR 
were important.  In incorporated 
nanoparticles, percent weight was also 
important.  Feature importance values 
from the XGBoost model are shown in 
Figure 6 for the four target variables.

XGB outperformed all other 

models in terms of MSE, 

RMSE, MAE, and R².

20 DSIAC Journal  //  2025 TABLE OF  
CONTENTS



DFT Simulations

It was found that the CP2K software 
suite was better optimized for the 
CPU than the GPU, with optimization 
iteration times being an order of 
magnitude lower than on the GPU.  
DFT software applications are 
generally written using Fortran due to 
its high efficiency and extremely well-
established set of linear optimization 
and matrix multiplication libraries that 

are core parts of any DFT software.  
Because of the high complexity of 
these software applications, they have 
also been slow to uptake modern 
GPUs designed for the matrix 
operations used in linear optimization 
and matrix multiplication.  The poor 
GPU performance relative to CPU 
observed in CP2K is a possible result 
of years of CPU optimization being 
compared to a relatively new and 

unoptimized GPU implementation.  
Another key contributor to this issue is 
the fact that the monomer system sizes 
are likely not large enough to benefit 
from the use of massively parallelized 
GPUs.

A study from Los Alamos National 
Laboratory that involved performance 
benchmarking comparisons between 
CPU- and GPU-based CP2K 
implementations showed up to a 
3.7× boost in performance on a GPU 
system compared to an identical 
simulation on a CPU [7].  Their system 
size was on the order of 900 atoms, 
and they did observe a significant 
boost in performance at the much 
larger system size.  It is highly likely 
that small system sizes (<50 atoms) 
under study did not necessitate 
the high-throughput advantages 
of the GPU, and the increased 
amount of overhead from GPU-
CPU memory transfers led to longer 
runtimes compared to the CPU-only 
implementation. 

Figure 5.  Comparison of ML Models With Different Metrics (Source:  G. M. Nishibuchi).

Figure 6.  Top Feature Importance Values for Different Target Variables From the XGBoost Model (Source:  G. M. Nishibuchi).
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In Figure 7, one incorrect calculation 
was observed for the free energy of 
polyvinyl fluoride due to an issue 
with the geometric optimization’s 
convergence.  While polyethylene’s 
HOMO-LUMO gap appears to be 
an outlier, it was evaluated against 
literature values and found to be 
consistent.  In a larger system, this gap 
would decrease because of conjugated 
bonds in the larger polymer chain.

CONCLUSIONS
Predicting macroscale cone calorimeter 
measurements from atomistic 
features comes with a wide variety 
of challenges, both theoretical and 
practical.  This work demonstrated the 
development of molecular fingerprints 
for predicting polymer flammability, 
first principles simulations of neat 
resins, and the development of ML  
and DL molecules for predicting ASTM  
E1354 experimental measurements 
from DFT, experimental, and 
molecular properties.  The use of 
ensemble prediction was found to 
be effective in the low data domain 
of ASTM E1354 experimentation.  
Continued work in developing 
standardized databases for storing 
cone calorimetry data is imperative for 
further development of ML methods 
to predict polymer flammability. 
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DATA-OPTIMIZED HUMAN-
MACHINE TEAMING WITH

BY CHRISTINA HAYHURST, CHRISTINE COVAS-
SMITH, AND PATRICIA HARRIS  (SOURCE:  CANVA AND 
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INTRODUCTION

T he 2022 National Defense Strategy directs 
the U.S. Department of Defense (DoD) to 
urgently act to strengthen the U.S. military 

against its pacing challenge—the People’s Republic of 
China (PRC) [1].  The PRC challenges the U.S. military’s 
information advantage in the operational environment, 
undermining kinetic maneuver across all domains of 
the Joint Force [2].  Within the air domain, the PRC’s 
ability to disrupt, deny, and degrade the data informing 
air operations will threaten the U.S. Air Force’s 
Operational Imperative of tactical air dominance 
and the Air Force Future Operating Concept of the 
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successful fight for air superiority at 
the forward edge of the battlespace.  
Human-machine teaming (HMT) with 
artificial intelligence (AI)-driven air 
power platforms, such as the uncrewed, 
autonomous, “robotic wingmen” 
aircraft known as collaborative combat 
aircraft (CCA), will thwart the PRC’s 
pursuit of information advantage.  
CCA employment will shrink the kill 
chain and expand the air domain's 
lethality by providing qualitative and 
quantitative optimization of Air Force 
operators’ observe, orient, decide, and 
act (OODA) loop and targeting cycle.

However, HMT optimization depends 
upon human-data accountability, 
which is the human ownership, 
understanding, and implementation of 
the data that the CCAs use to execute 
tactical decisions autonomously.  In 
the future operating environment, 
data will be the critical pivot between 
human command of CCAs and CCA 
algorithmic effects on the battlespace.  
To best equip the Joint Force for 
future CCA employment against the 
PRC threat, the DoD must consider 
new criteria to determine the next 
generation of its readiness reporting 
for robotic wingmen—the combat 
readiness of CCA data.

This article will recommend a CCA 
data readiness tool that quickly 
informs commanders of their level 
of risk assumption based on data 
criteria rankings and using the tool’s 
application to cognitive electronic 
warfare (CEW) CCAs as a vignette.  

It will also suggest the personnel, 
policy, and technology investments to 
optimize each data readiness criterion.

AUTONOMOUS WEAPONS 
SYSTEM’S (AWS’s) 
“BLACK BOX” CHALLENGE
AWSs are transformational 
technologies for future warfare.  The 
incremental development of AWSs 
that “once activated, can select and 
engage targets without further human 
intervention” has led to human 
operators moving further from 
the immediate decision-making on 
the use of force [3].  This human-
machine interaction weaponizes AI by 
distributing an agency to an AWS that 
is inaccessible to human reasoning.  
While many computational techniques 
are summarized under the “AI” term, 
autonomous systems that the military 
are currently developing fall under the 
“narrow AI” category.

At the heart of narrow AI applications 
are machine-learning (ML) algorithms 

that are data-hungry and data-
dependent [3].  AWS’s reliance on 
data processed by ML algorithms 
presents a fundamental problem for 
commanders using it on the battlefield.  
Today’s ML algorithms are in a black 
box that cannot explain or guarantee 
certain behaviors.  This problem raises 
an important question—how can 
commanders be reasonably responsible 
for using an AWS if they do not 
know the system’s decision-making 
process?  Fortunately, AWS’s current 
black box behavior is not a foregone 
conclusion that commanders must 
reluctantly accept as necessary for 
future Warfighting and information 
dominance.

The question of trust in machines 
for risk calibration and the extent of 
meaningful human control (MHC) for 
the ethical employment of autonomous 
weapons systems are not novel.  As 
weapons systems have become 
technologically sophisticated, research 
regarding machine trust and MHC has 
grown in practical application.  The 
lessons gained from past automatic 
weapon employment and MHC 
research form a valuable foundation to 
consider future commander trust and 
risk assessment of autonomous systems 
on the battlefield.

MHC APPLIED TO AWSs
Autonomy and automation have 
“long been integrated into the 
critical functions of air defense 
systems to detect, track, prioritize, 
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select, and potentially engage 
incoming air threats” [3].  In their 
“automatic” mode, air defense systems 
autonomously deploy countermeasures 
if they detect a threat; however, human 
operators are “on-the-loop,” allowing 
them to supervise the system’s actions 
and abort the attack.  In this case, 
human operators retain situational 
awareness and have sufficient insights 
into the parameters under which 
the command module selects and 
prioritizes targets.  However, to break 
down the noteworthy problems with 
autonomous air defense operations, 
it is helpful to understand three 
dimensions of MHC discovered 
through human factors research—a 
technological dimension through 
weapon design, a conditional 
dimension that limits weapons use, 
and a decision-making dimension that 
defines acceptable human-machine 
interaction.  All three dimensions 
must be considered when employing 
autonomous systems to reach an 
ethically responsible level of MHC.

In the case of air defense systems, 
the compromise of MHC has led to 
many severe incidents of friendly fire, 
specifically in the human-machine 
interaction dimension.  For example, 
a series of fratricides involving the 
Patriot system, a human-in-the-
loop air defense system, attributed 
to excess trust that made the 
system a de facto fully autonomous 
weapon [4].  A thorough analysis 
of these friendly fire incidents by 
autonomous air defense systems 

identified the following challenges:  
automation bias or overtrust, lack 
of system understanding, lack of 
situational awareness, lack of time for 
deliberation, lack of human expertise, 
inadequate training, and operating 
under high-pressure combat situations 
[3].

As autonomy increases, the loss of 
user alertness is proportional to 
the system’s enhanced automation 
and perceived reliability, leading 
to the “automation conundrum” 
[4].  Despite this identified issue 
of MHC over Patriot equipment 
in its “automatic” mode during 
the fratricide incidents, the Army’s 
readiness assessment of Patriot units 
continues to be exclusively tied to 
its maintenance requirements and 
equipment replacement rates as part 
of its Patriot recapitalization program 
[5].  Autonomous operations have 
unfortunately increased without 
proper risk considerations and 
readiness evaluations of its data-
driven autonomy algorithms, leading 
to operations with meaningless human 
control as an unfortunate yet still 
appropriate use of force.

PAIRING HMT WITH MHC
This state of reluctant risk acceptance 
is not only incompatible with the 
future ethical employment of AWS 
but challenges optimal HMT during 
operational employment.  The 
rise in automation necessitates a 

reconceptualization of trust between 
humans and automated systems.  
Undertrust in a system can lead to 
its lack of use, and overtrust can lead 
to complacency and poor monitoring 
[6].  Since under- and overtrust 
are problematic, appropriate trust 
calibration is critical to effective 
HMT and risk assessment.  Increasing 
automation has led to the advent of a 
new HMT paradigm [7].  Within this 
paradigm, the machine is a teammate 
of the human, who has innovative 
abilities to be exploited rather than 
liabilities for which to be compensated.  
To determine how humans can 
appropriately calibrate trust in future 
AWSs to best facilitate HMT, it is 
helpful to examine how to apply MHC 
models to commander trust calibration 
in operational weapons systems with 
autonomous features [3].

Human factors research has shown 
three key variables influencing HMT 
with automated systems:  (1) the 
human trustor, (2) the automated 
machine trustee, and (3) the context 
in which the interaction occurs [6].  
These variables nest within MHC's 
three technological, conditional, 
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and human-machine interaction 
dimensions in autonomous weapons 
systems.  The technological dimension 
of MHC represents the machine's 
system factors, which include physical 
system attributes and performance 
factors.  The conditional dimension 
of MHC includes environment and 
context-related factors, which involve 
team collaboration and task-based 
factors like type and complexity.  
MHC's final human-machine 
interaction dimension represents 
the human trustor, which clarifies 
the human’s understanding of his or 
her role in the shared work with an 
automated system.

For human operators to regain 
meaningful control of autonomous 
systems, which enables the appropriate 
calibration of the trust in employing 
combat-ready robotic wingmen, the 
following three prerequisite conditions 
must be met that apply human factors 
variables and MHC dimensions to 
CCAs [3]:

1.	 A functional understanding of 
how the targeting system operates 
(automated machine trustee 
variable with the technological 
dimension).

2.	 Sufficient situational understanding 
(context variable with the 
conditional dimension).

3.	 The capacity to scrutinize machine 
targeting decision-making (human 
trustor variable with the human-
machine interaction dimension).

Optimized teaming between 
Warfighters and AWSs begins with 
optimized human-data accountability 
that hinges on these three HMT 
human factors variables combined 
with the three dimensions of MHC—
technological, conditional, and human-
machine interaction.

APPLYING CCA WITH THE 
CEW MISSION
Within the Air Force, CCAs will 
be the future air domain AWS that 
flies autonomously alongside crewed 
platforms, testing HMT concepts 
against the PRC threat [8].  CCAs 
will harness autonomy, AI, and ML 
to present formidable airpower 
capacity against hostile air threats 
in highly contested environments.  
These loyal, robotic wingmen can 
team with human operators by 
offloading data analysis tasks such as 
suggesting flight corridors, mapping 
targets, and appropriate courses of 
action [4].  Additionally, to increase 
the survivability of crewed platforms 
within the PRC’s highly contested and 
lethal environment, dense with anti-
access/area denial (A2/AD) capabilities, 
CCAs can also saturate China’s 
People’s Liberation Army (PLA) 
defenses or autonomously deliver 
kinetic effects.

Although CCAs will be designed to 
perform various mission sets, this 
article will recommend CCA data 
readiness criteria for evaluating 

cognitive electronic warfare (CEW)-
designated CCAs.  It will use tactical, 
forward-edge CEW CCAs as a case 
study to address the most fundamental 
threat CCAs could face to challenge 
optimized HMT—effects against its 
data.  Electronic warfare (EW) uses 
the electromagnetic spectrum (EMS) 
to deliver effects against the enemy’s 
use of the EMS.  The next generation 
of EW is CEW weapons systems 
that use AI and ML to automate EW 
decisions involved in the detection, 
signal classification, prediction of 
enemy EW tactics, and countermeasure 
execution.  Since freedom of EMS 
maneuver provides kinetic maneuver, 
future wars will be won or lost in the 
EMS, making CEW CCAs critical in 
potential conflict against the PRC.

Until recently, EMS threats did not 
change quickly, so the EW integrated 
reprogramming (EWIR) process could 
take months to reconfigure operational 
flight programs [9].  However, PRC 
EW assets have rapidly advanced, 
and responding to these assets 
requires faster updates than the EWIR 
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enterprise can accomplish.  The PLA’s 
strategists insist on establishing EMS 
dominance through EW against U.S. 
assets through the deception strategy 
of “hide the real and inject the false,” 
affecting data to mislead U.S. operators 
[10].

Consequently, the new CEW CCA 
capability that the United States is 
developing must have data that is 
accessible, secure, and appropriately 
configured to deliver intended 
battlefield effects.  Despite this need, 
commanders lack a readiness reporting 
tool to assess a CEW CCA’s readiness 
to fulfill its intended capability based 
on the combat readiness of the data 
driving its behavior.  Furthermore, 
commanders have neither a means of 
qualifying how much risk they assume 
by employing robotic wingmen nor 
a means of ethical accountability for 
their CCA employment decision.

The operational concept of combat-
ready data must be crafted to optimize 
HMT with future CEW CCAs to 
rapidly generate EW effects at the 
forward edge of the battlespace.  Since 
Joint Force commanders currently lack 
the ability to appropriately determine 
if data that will drive CEW CCAs 
can achieve their intended effects of 
denying adversary objectives without 
being compromised or introducing 
ambiguity to friendly forces, the 
following seven criteria should be used 
to evaluate the combat readiness of 
data using both MHC dimensions and 
HMT factors:

1.	 Data security within the 
technological dimension.

2.	 Data trust within the technological 
dimension.

3.	 Data architecture within the 
technological dimension.

4.	 Data understanding within the 
conditional dimension.

5.	 Data accessibility within the 
human-machine interaction 
dimension.

6.	 Data visibility within the human-
machine interaction dimension.

7.	 Data interoperability within 
the human-machine interaction 
dimension.

These seven criteria are not only 
the enabling objectives of the 2022 
DoD Data Strategy, as illustrated in 
Figure 1, but they can also be uniquely 

understood in their application to 
data-driven CEW CCAs [11].

Figure 2 shows the proposed 
interrelationship between the 
MHC dimensions for ethical AWS 
employment, HMT factors for optimal 
AWS operations, and the 2022 DoD 
Data Strategy’s data goals for CCA 
data readiness.  These concepts must 
be applied to future CCA use to ensure 
commanders are ethically accountable 
and risk-informed regarding CCA 
employment’s cost to achieving 
military objectives [12].

DIMENSIONS OF MHC
Three dimensions characterize 
MHC—technological, conditional, and 
human-machine interaction.  Figure 2 
highlights how specific HMT factors 

Figure 1.  DoD Data Strategy of Vision, Principles, Capabilities, and Goals (Source:   
U.S. DoD [11]).
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and CCA data readiness goals from the 
2022 DoD Data Strategy nest within 
these three dimensions.

Technological

The first dimension of MHC is the 
technological dimension, defined by 
data security, trust, and architecture.  
These factors are critical to 
characterizing the machine variable 
influencing human trust in automated 
systems.

Data Security

Within the 2020 DoD Data Strategy, 
the DoD’s Chief Data Officer (CDO) 
governs the DoD’s data management 
efforts to ensure data security 
standards are met across the entire 

department [11].  The data security 
approach recommended in the 
2020 DoD Data Strategy is granular 
privilege management, which uses 
identity, attributes, and permissions 
to govern access to data through 
public key cryptography.  However, 
once cryptanalytically relevant 
quantum computer capabilities are 
available, public key algorithms will be 
vulnerable to adversary attacks [13].

Quantum computing systems threaten 
current encryption mechanisms that 
provide the basis of internet commerce 
and communication.  The PRC has 
surged in its quantum technology 
research and investments.  Chinese 
companies dominate in quantum 
cryptography patents, and China 

has taken the lead in the largest 
demonstrated network with quantum 
key distribution [14].  If nothing is 
done now to protect data streams, 
any encrypted data the PLA intercepts 
will be vulnerable to decryption in 
the future.  CCAs with data protected 
by post-quantum cryptography 
(PQC) provide the best data security 
assurance [15].  Consequently, CCA 
data characterized by PQC security 
standards gives a commander the 
lowest risk to the mission within the 
data security criterion.

Data Trust

Data trust is the next factor that 
informs the technological dimension of 
MHC of CCAs.  The 2020 DoD Data 
Strategy describes trustworthy data 
as having proper tags and pedigree 
metadata throughout its life cycle [11].  
These actions build user confidence in 
the data due to enhanced data quality, 
which is critical to support operational 
decision-making.  The Chief Digital 
and Artificial Intelligence Officer 
(CDAO) further clarifies metadata 
governance in the 2023 DoD Metadata 
Guidance [16].  The guidance assumes 
that DoD organizations “will apply 
metadata at the most appropriate time 
between creation and storage and 
maintain the tagging through the data 
assets’ life cycles” [16].  Trustworthy 
data is tagged data that supports the 
metadata functions of search and 
discovery, access control, correlation, 
audit, records management, and 
protection.  CCAs that use data in 

Figure 2.  Interrelationship Diagram of MHC, HMT, and Data Goals (Source:   
C. Hayhurst, C. Covas-Smith, and P. Harris).

30 DSIAC Journal  //  2025 TABLE OF  
CONTENTS



compliance with the DoD Metadata 
Guidance give commanders the lowest 
risk in data trust.

Data Architecture

The third element of the technological 
dimension is data architecture.  For 
CEW CCAs, a robust data architecture 
would enable the rapid assessment of 
CCA employment to determine the 
effectiveness of its adversary signal 
translations and countermeasure 
decisions.  The data architecture that 
the Air Force will field that satisfies 
this element is the Advanced Battle 
Management System (ABMS), which 
allows data to be shared across 
multiple platforms as part of the DoD’s 
Joint All Domain Command and 
Control effort [17].

The success of the ABMS data 
architecture depends on rigorous 
adherence to data standards that 
provide a common application 
environment and a set of flexible 
protocols [18].  This architecture 
would provide CCAs and their human 
operators with a totality of data to 
be used at the strategic level and 
tactical edge so the commander’s 
intent can be met with relevant data at 
the location most applicable to CCA 
operation.  Furthermore, a robust 
ABMS architecture would sense and 
synthesize data through AI/ML-
based analytics at expected intervals, 
provisioning CCAs with as relevant 
and accurate a data threat picture as 
possible before reaching degraded or 
denied A2/AD environments.

To improve the speed and quality of its 
own information processing, the PLA 
is also pursuing a “system of systems” 
network under its informatized and 
intelligentized warfare concepts 
[2].  Both senior DoD leaders and 
PLA officials anticipate victory as 
ultimately belonging to the side with 
decision superiority through sensing 
and analyzing data more rapidly and 
accurately than their opponents.  Data 
immediately tagged with a common 
data standard, cataloged, and securely 
stored within ABMS optimizes CCAs’ 
potential in the HMT construct, giving 
commanders the lowest risk in the 
data architecture criterion.

Conditional

The second dimension of MHC is the 
conditional dimension, defined by data 
understanding within its operating 
environment.  Data understanding 
manifests as physical limitations 
embedded with CCA algorithms that 
constrain the timing, locality, and 
targeting of CEW operations.  The 
success of a CEW CCA depends on its 
interpretation of the conditions of its 
operational environment, which will 
inevitably be mired in the fog of war.

Although the range of CCA’s actions 
is bound by its algorithmic output, 
it must be capable of employing in 
environments lacking well-defined 
contexts.  The critical question 
regarding how the CCA interprets its 
operating environment is, How can 
a machine be trained to suspect the 

truthfulness of its input and even its 
own training?

The concept of deception is antithetical 
to AI as a method of rapidly compiling 
and analyzing data.  Data-saturated 
environments with true and false 
inputs must be considered when 
developing CCAs’ data examination 
and processing cycles.  Robust data 
understanding that detects deception 
is critical against AI-advanced 
adversaries like the PLA; standardized 
countermeasure EW tactics by CCAs 
will inevitably create opportunities 
for the PLA to use deception once 
discovered [19].  In other words, CEW 
CCAs must recognize when corrupted 
sensors introduced by the PLA are 
feeding them poisoned data.

One way to mitigate this vulnerability 
is through the CEW CCA's internalized 
AI adjudication to determine what 
deception is and is not through 
variable validity testing.  However, 
standardizing these tests would 
provide opportunities for the PLA  
to deceive the test mechanisms.
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Another medium-risk option to 
enhance the CCA’s data understanding 
is by having committed, reachback 
EW experts, including engineers, EW 
officers, combat systems officers, and 
weapons systems officers, to analyze 
when, where, and how quickly the 
CEW CCA detected EW changes in 
the environment and whether its 
waveform countermeasures were 
successful.  Deployed EW experts, 
as opposed to in-garrison, are more 
beneficial due to their proximity to 
the forward edge of the battlespace.  
This would allow them to deliver 
tactically relevant updates directly 
to the CCAs without relying on 
vulnerable datalinks.  The closer 
human operators are to CCAs, the 
easier the logistics needed to adjust 
the CCAs’ algorithms to act on the 
most accurate information, providing 
commanders the lowest risk in the 
data understanding criterion.

Human-Machine Interaction

The third dimension of MHC is the 
human-machine interaction dimension, 
defined by data accessibility, visibility, 
and interoperability.

Data Accessibility

Data accessibility entails the ability to 
access data for CCA mission execution.  
Data must be visible and accessible 
in a timely and relevant manner, 
at a minimum, to the authorizing 
commander.  By having the authority 
to access the data driving the CCAs, 
the commander can assess the data's 

reliability in driving CEW CCA 
systems.  Data accessibility risk is 
lowered when data is accessible to both 
the theater commander employing 
the CCAs and the communities of 
interest (COIs) engaged in delivering 
the CCA data and assessing its data 
use in after-action studies.  These 
COIs range from the in-garrison 
service intelligence agencies to the 
deployed EW professionals in theater.  
Data accessibility to all command 
echelons and stakeholders provides the 
lowest risk within the data availability 
criterion.

Data Visibility

The second factor of the human-
machine interaction dimension, data 
visibility through data interfaces, 
significantly influences the quality of 
HMT.  Current demonstrations of 
pilot interactions with CCA prototypes 
leverage handheld tablets to send and 
receive operational data between the 
pilot and the machine [4].  Data that 
feeds CCA algorithms and manifests 
through CCA mission execution should 
ideally integrate with the Air Force’s 
future ABMS infrastructure [20].  
However, creating an effective user 
interface for ABMS data that feeds 
CCAs is a monumental challenge due 
to the massive amounts of sensor-to-
shooter data expected to be collected 
[21].

Furthermore, as the amount of data-
fueling CCA operations grows, the 
massive data influx to the human 
operator can lead to cognitive 

overload, complacency, and loss 
of alertness [4].  Even though data 
interfaces with monitorable dashboards 
or a graphical user interface can be 
designed to alleviate this information 
overload, the traditional screen 
interfaces on tactical, 14-inch tablets 
and computers have physical restraints 
regarding their ability to display 
extensive real-time data to CCA 
human monitors.

One way to relieve humans from user 
interface limitations is by converging 
CCAs with neurotechnology, allowing 
bidirectional interaction between 
the human nervous system and the 
autonomous machine.  Brain-computer 
interfaces (BCIs) would integrate the 
control of loyal wingmen into the 
human decision-making processes, 
accelerating their OODA loop and 
removing the task of designing CCA 
interfaces [4].  The U.S. Defense 
Advanced Research Projects Agency 
(DARPA) invests millions of dollars 
annually in BCI projects.  DARPA’s 
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most recent noninvasive BCI program 
is its Next-Generation Nonsurgical 
Neurotechnology, which “aims 
to develop high-performance, bi-
directional brain-machine interfaces 
for able-bodied service members” 
[22].  This interface enables technology 
to “control unmanned aerial vehicles 
and active cyber defense systems or 
teaming with computer systems to 
successfully multitask during complex 
military missions” [22].  The practical 
application of BCI research to CCA 
user interfaces provides the lowest 
risk of the data visibility criterion to 
authorizing commanders.

Data Interoperability

The third criterion to consider when 
evaluating a CCA’s human-machine 
interaction dimension is its data 
interoperability.  A critical concern 
for effective HMT is the ability of the 
data driving the weapons system to be 

interoperable within the larger system-
of-systems context of ABMS.  Data 
interoperability will ensure data flow 
and connectivity as ABMS evolves and 
expands, allowing data to fuel dynamic 
reassignment between humans and 
CCAs on the battlefield [7].  Data 
interoperability is enabled through 
common data standards used across 
not just the Air Force but also the 
other services, allies, and partners, 
with appropriately labeled releasability 
caveats on the data.  All of these 
elements of data interoperability 
collectively provide commanders 
with the lowest risk of the data 
interoperability criterion.

DATA READINESS 
REPORTING TOOL
A summary of all seven data criteria 
and the respective standards that must 
be met to assign high, medium, or 

low risk for CEW CCA data readiness 
is shown in Table 1.  Commanders 
should use this tool to assess how 
much risk to mission they assume 
when employing AWS on the 
battlefield and understand how to best 
mitigate that risk with the proposed 
personnel, policy, and technology 
recommendations included in each risk 
level description.  This tool provides 
ethical accountability of commander 
decisions by incorporating MHC over 
AWS in all the criterion assessments.

The proposed robotic wingmen 
readiness tool helps to ensure that 
CCA operations are not opaque to 
authorizing commanders.  Rather 
than viewing CCA algorithm-
driven behavior as a black box, data 
readiness ratings based on MHC 
dimensions position commanders 
to take responsibility for the AWS’s 
actions.  The “low risk” data criteria 
column provides a strategic direction 

Table 1.  Proposed Robotic Wingmen Readiness Tool

COLLABORATIVE COMBAT AIRCRAFT DATA READINESS REPORTING TOOL

MHC DIMENSION HMT FACTORS DATA CRITERIA HIGH RISK MEDIUM RISK LOW RISK

Technological Machine

Security CDO data standards 
noncompliance Public key cryptography PQC standards

Trust CDAO metadata 
noncompliance

Limited metadata 
application CDAO metadata compliance

Architecture Point-to-point data 
feeds

Networked command 
and control

AI/ML-based AMMS 
analytics

Conditional Environment Understanding AI-validated algorithm In-garrison expertise Deployed expertise

Human-machine 
interaction Human

Accessibility Authorizing 
commander

Department of the Air 
Force data & EW COIs DoD data COIs

Visibility Platform-specific user 
interface

Integrated ABMS user 
interface

Neurotechnology integration 
with ABMS data

Interoperability Minimal data 
standards met

Data standards limited 
to mission type

Contextualized to ABMS 
system of systems
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for the DoD to optimize HMT through 
the ethical balance of autonomy and 
human interaction.

Although this article uses CEW CCAs 
as a vignette to explore the combat 
readiness of data, the seven proposed 
data criteria also apply to other 
robotic wingmen the DoD is fielding.  
The option for human control and 
verification is paramount in offensive 
autonomous weapons that can deliver 
lethal kinetic effects.

CONCLUSIONS
Legacy readiness reporting criteria 
are insufficient to assess the combat 
readiness of the DoD’s next generation 
of robotic wingmen.  An appropriate 
framework to evaluate future robotic 
wingman readiness is through 
the three dimensions of MHC of 
autonomous systems, all of which 
characterize the data ultimately driving 
the AWS operations.  Robotic wingmen 
assigned the lowest risk of each data 
criterion within the proposed CCA 
data readiness tool position CCAs 
to achieve optimal HMT with their 
human wingmen.

To realize the vision of this data 
readiness tool, future commanders 
and their staff will need to be data 
literate to accurately assess each data 
criterion.  Data literacy and digital 
talent must no longer be siloed to 
specific Air Force Specialty Codes 
but rather foundational to all future 

airmen.  The Air Force must adopt 
a new readiness tool to reasonably 
hold commanders accountable for 
employing CCAs on the battlefield, 
and the DoD can use the Air Force’s 
tool as its benchmark for assessing 
AWS across all services.  As the DoD 
embraces AWS to meet the pacing 
challenge of China, service leaders 
must examine new ways to organize, 
train, and equip their members to best 
team with its future robotic wingmen.  
Like the 26th Secretary of the Air 
Force Frank Kendall stated in his 2022 
Congressional hearing addressing 
Air and Space Force modernization 
efforts, “Change is hard, but losing is 
unacceptable” [23]. 

REFERENCES
[1] U.S. DoD.  “National Defense Strategy.”  
Washington, DC:  Office of the Secretary of Defense, 
p. 127, October 2022.

[2] U.S. DoD.  “Military and Security Developments 
Involving the People’s Republic of China.”  2023 
Annual Report to Congress, Washington, DC:  Office of 
the Secretary of Defense, pp. 40 and 95, 26 October 
2022.

[3] Bode, I., and H. Huelss.  Autonomous Weapons 
Systems and International Norms.  London, UK:  
McGill-Queen’s University Press, 2022.

[4] Rickli, J.-M.  “Human-Machine Teaming in 
Artificial Intelligence-Driven Air Power:  Future 
Challenges and Opportunities for the Air Force.”  
The Air Power Journal, Fall 2022, vol. 8, https://
www.diacc.ae/resources/2022_Jean_Marc_Rickli_ 
Federico_Mantellassi_Human-Machine_Teaming_
Air_Power.pdf, accessed on 12 March 2024.

[5] United States Government Accountability Office 
(GAO).  “Analysis of Maintenance Delays Needed 
to Improve Availability of Patriot Equipment for 
Training.”  GAO Report 18-447, Washington, DC,  
p. 7, June 2018.

[6] Sanders, T. L., et al.  The Neurobiology of Trust.   
Cambridge University Press, chapter 4, pp. 78 and 
79, https://www.cambridge.org/core/books/abs/ 
neurobiology-of-trust/trust-and-human-factors/

D51AD892F20EDA9404108BD66 49489E0#,  
9 December 2021.

[7] Madni, A. M., and C. C. Madni.  “Architectural 
Framework for Exploring Adaptive Human-Machine  
Teaming Options in Simulated Dynamic Environments.”   
Systems 6, no. 4, Spring 2018, pp. 3 and 15, https://
www.mdpi.com/2079-8954/6/4/44, accessed on  
5 January 2024.

[8] Air Force Technology.  “Collaborative Combat 
Aircraft.”  https://www.airforce-technology.com/
projects/collaborative-combat-aircraft-cca-usa/?cf-
view&cf-closed, accessed on 7 January 2024.

[9] Vedula, P., et al.  “Outsmarting Agile Adversaries 
in the Electromagnetic Spectrum.”  RAND Report 
A981-1, Santa Monica, CA:  RAND Corporation,  
p. 5, 19 January 2023.

[10] Clay, M.  “To Rule the Invisible Battlefield:   
The Electromagnetic Spectrum and Chinese Military 
Power.”  War on the Rocks, https://warontherocks.
com/2021/01/to-rule-the-invisible-battlefield-the-
electromagnetic-spectrum-and-chinese-military-
power/, 22 January 2021.

[11] U.S. DoD.  “DoD Data Strategy.”  Washington, 
DC:  Office of the Secretary of Defense, pp. 1, 5,  
and 8, 30 September 2020.

[12] Joint Chiefs of Staff.  Joint Publication (JP) 5-0.  
“Joint Planning,” p. xiv, 1 December 2020.

[13] National Cybersecurity Center of Excellence.  
“Migration to Post-Quantum Cryptography.”  NIST,  
https://www.nccoe.nist.gov/sites/default/files/2023- 
08/mpqc-fact-sheet.pdf, August 2023.

[14] Stefanick, T.  “The State of U.S.-China Quantum 
Data Security Competition.”  Brookings Institution, 
https://www.brookings.edu/articles/the-state-of- 
u-s-china-quantum-data-security-competition/,  
18 September 2020.

[15] Cybersecurity and Infrastructure Security Agency.   
“Quantum-Readiness:  Migration to Post-Quantum 
Cryptography.”  Washington, DC, 21 August 2023.

[16] U.S. DoD.  “DoD Metadata Guidance, Version 
1.0.”  Washington, DC:  Chief Digital and Artificial 
Intelligence Officer, pp. 4 and 5, January 2023.

[17] Hoehn, J. R.  “Advanced Battle Management 
System.”  Congressional Research Service Report 
IF11866, vol. 5, 15 February 2022.

[18] National Academies of Sciences.  Engineering, 
and Medicine, Advanced Battle Management System:  
Needs, Progress, Challenges, and Opportunities Facing  
the Department of the Air Force.  Washington, DC:   
The National Academies Press, p. 37, 2022.

[19] Tangredi, S. J., and G. Galdorisi.  AI at War:  
How Big Data, Artificial Intelligence, and Machine 
Learning Are Changing Naval Warfare.  Annapolis,  
MD:  Naval Institute Press, pp. 300, 301, 310,  
and 311, 2021. 

34 DSIAC Journal  //  2025 TABLE OF  
CONTENTS

https://www.diacc.ae/resources/2022_Jean_Marc_Rickli_ Federico_Mantellassi_Human-Machine_Teaming_Air_Power.pdf
https://www.diacc.ae/resources/2022_Jean_Marc_Rickli_ Federico_Mantellassi_Human-Machine_Teaming_Air_Power.pdf
https://www.diacc.ae/resources/2022_Jean_Marc_Rickli_ Federico_Mantellassi_Human-Machine_Teaming_Air_Power.pdf
https://www.diacc.ae/resources/2022_Jean_Marc_Rickli_ Federico_Mantellassi_Human-Machine_Teaming_Air_Power.pdf
https://www.cambridge.org/core/books/abs/ neurobiology-of-trust/trust-and-human-factors/D51AD892F20EDA9404108BD66 49489E0%23
https://www.cambridge.org/core/books/abs/ neurobiology-of-trust/trust-and-human-factors/D51AD892F20EDA9404108BD66 49489E0%23
https://www.cambridge.org/core/books/abs/ neurobiology-of-trust/trust-and-human-factors/D51AD892F20EDA9404108BD66 49489E0%23
https://www.mdpi.com/2079-8954/6/4/44
https://www.mdpi.com/2079-8954/6/4/44
https://www.airforce-technology.com/projects/collaborative-combat-aircraft-cca-usa/?cf-view&cf-closed
https://www.airforce-technology.com/projects/collaborative-combat-aircraft-cca-usa/?cf-view&cf-closed
https://www.airforce-technology.com/projects/collaborative-combat-aircraft-cca-usa/?cf-view&cf-closed
https://warontherocks.com/2021/01/to-rule-the-invisible-battlefield-the-electromagnetic-spectrum-and-chinese-military-power/
https://warontherocks.com/2021/01/to-rule-the-invisible-battlefield-the-electromagnetic-spectrum-and-chinese-military-power/
https://warontherocks.com/2021/01/to-rule-the-invisible-battlefield-the-electromagnetic-spectrum-and-chinese-military-power/
https://warontherocks.com/2021/01/to-rule-the-invisible-battlefield-the-electromagnetic-spectrum-and-chinese-military-power/
https://www.nccoe.nist.gov/sites/default/files/2023-08/mpqc-fact-sheet.pdf
https://www.nccoe.nist.gov/sites/default/files/2023-08/mpqc-fact-sheet.pdf
https://www.brookings.edu/articles/the-state-of-u-s-china-quantum-data-security-competition/
https://www.brookings.edu/articles/the-state-of-u-s-china-quantum-data-security-competition/


[20] Johnson, T. R.  “Emerging Tanker Roles and 
Risks in the Advanced Battle Management System 
Era.”  Wild Blue Yonder, https://www.airuniversity.
af.edu/ Wild-Blue-Yonder/Article-Display/Article/ 
2652095/emerging-tanker-roles-and-risks-in-the-
advanced-battle-management-system-era/, accessed 
on 15 January 2024.

[21] Wolfe, F.  “Effective User Interfaces for 
ABMS a ‘Momentous Challenge,’ U.S. Space Force 
Says.”  Defense Daily, https://www.defensedaily.com/
effective-user-interfaces-abms-momentous-challenge-
u-s-space-force-says/space/, accessed on 14 October 
2023.

[22] Willis, A.  “Next-Generation Nonsurgical 
Neurotechnology.”  Defense Advanced Research 
Projects Agency, https://www.darpa.mil/program/
next-generation-nonsurgical-neurotechnology, 
accessed on 16 February 2024.

[23] Secretary of the Air Force Public Affairs.  
“Kendall, Brown, Raymond Tell Congress $194 
Billion Budget Request Balances Risks, Quickens 
Transformation.”  U.S. Air Force News, https://www.
af.mil/News/Article-Display/Article/3012814/
kendall-brown-raymond-tell-congress-194-billion-
budget-request-balances-risks/, accessed on  
13 December 2023.

BIOGRAPHIES
CHRISTINA HAYHURST is an active-duty U.S. Air 
Force (USAF) intelligence officer and instructor 
at the Squadron Officer School, with a follow-on 
assignment at the School of Advanced Air and Space 
Studies.  Her operational assignments have provided 
intelligence support to Air Force bomber missions, 
Warfighter customers of the National Air and Space 
Intelligence Center, acquisition professionals within 
the Air Force Life Cycle Management Center, and the 
Air Force Special Tactics enterprise.  Maj. Hayhurst 
holds a bachelor’s degree in biochemistry from the 
USAF Academy, a master’s degree in international 
security and economic policy from the University 
of Maryland, and a master’s degree in military 
operational art and science from the Air Command 
and Staff College.

CHRISTINE COVAS-SMITH is the director of the 
Air Education and Training Command’s Enterprise 
Learning Engineering (ELE) Center of Excellence at 
Joint Base San Antonio, Randolph Air Force Base, TX.  
She is leading the implementation of ELE as a sense-
making framework for USAF development, including 

increasing competency-based learning through 
systematic application of evidence-based principles, 
scientific methods, and practices from the learning 
sciences and education research and systems thinking 
to modernize learning.  Dr. Covas-Smith holds a 
Ph.D. in applied psychology and cognitive action 
perception from Arizona State University.

PATRICIA HARRIS serves as the Writing Center 
Program lead at Air University and is a member of 
a core research group at the University of Bergen 
that focuses on the intersections of learning design, 
memory formation, and AI.   She tested integrated 
perception ML models for Creative Synthetic and 
was a former professor, associate dean, technology 
director, and co-instructor for the Future Ideas 
and Weapons Research Task Forces at the Air War 
College.  She wrote a book chapter focused on 
feedback strategies for Enlisted Professional Military 
Education that will be published by the U.S. Army 
Upgrade Program in 2025.  Ms. Harris holds a 
master’s degree in English literature and a Ph.D.  
in rhetoric and media studies.

DSIAC WEBINAR SERIES
DSIAC hosts live online 

technical presentations 

featuring a DoD research 

and engineering topic within 

our technical focus areas. 

Visit our website to view our 

upcoming webinars. 
https://dsiac.dtic.mil/webinars

35Volume 9  //  Number 2TABLE OF  
CONTENTS

https://www.airuniversity.af.edu/ Wild-Blue-Yonder/Article-Display/Article/2652095/emerging-tanker-roles-and-risks-in-the-advanced-battle-management-system-era/
https://www.airuniversity.af.edu/ Wild-Blue-Yonder/Article-Display/Article/2652095/emerging-tanker-roles-and-risks-in-the-advanced-battle-management-system-era/
https://www.airuniversity.af.edu/ Wild-Blue-Yonder/Article-Display/Article/2652095/emerging-tanker-roles-and-risks-in-the-advanced-battle-management-system-era/
https://www.airuniversity.af.edu/ Wild-Blue-Yonder/Article-Display/Article/2652095/emerging-tanker-roles-and-risks-in-the-advanced-battle-management-system-era/
https://www.defensedaily.com/effective-user-interfaces-abms-momentous-challenge-u-s-space-force-says/space/
https://www.defensedaily.com/effective-user-interfaces-abms-momentous-challenge-u-s-space-force-says/space/
https://www.defensedaily.com/effective-user-interfaces-abms-momentous-challenge-u-s-space-force-says/space/
https://www.darpa.mil/program/next-generation-nonsurgical-neurotechnology
https://www.darpa.mil/program/next-generation-nonsurgical-neurotechnology
https://www.af.mil/News/Article-Display/Article/3012814/kendall-brown-raymond-tell-congress-194-billion-budget-request-balances-risks/
https://www.af.mil/News/Article-Display/Article/3012814/kendall-brown-raymond-tell-congress-194-billion-budget-request-balances-risks/
https://www.af.mil/News/Article-Display/Article/3012814/kendall-brown-raymond-tell-congress-194-billion-budget-request-balances-risks/
https://www.af.mil/News/Article-Display/Article/3012814/kendall-brown-raymond-tell-congress-194-billion-budget-request-balances-risks/
https://dsiac.org/webinars/
https://dsiac.dtic.mil/webinars


BY NIRMALYA ROY, JADE FREEMAN, MARK DENNISON, THERON TROUT, AND TIMOTHY GREGORY
(PHOTO SOURCE:  123RF.COM)

MULTIAGENT  
FEDERATED LEARNING

INTEROPERABILITY, AND VIRTUAL-PHYSICAL CO-SIMULATION

36 DSIAC Journal  //  2025 TABLE OF  
CONTENTS



SUMMARY

T he composition of different 
types of terrains and 
presence of a variety 

of objects and artifacts in a real 
environment are always evolving.  Not 
every aspect of the environment can 
be learned, modeled, and synthesized 
a priori in an artificial intelligence 
(AI)-enabled, decision-making pipeline.  
If collaboration can be enabled 
among several deployed robots in 
different remote zones, it is possible 
to develop a generalized terrain and 
object detection model capturing 
greater uncertainty and variability 
in an environment.  Conventionally, 
to realize this, data sharing between 
agents and servers is warranted; 
however, that may introduce a higher 
risk of an adversarial attack.

Federated learning can be a useful 
approach to mitigate this issue.  The 
object detection model can be trained 
using federated learning in which 
training data will not be explicitly 
shared between the robots performing 
terrain reconnaissance in various 
geolocations.  The robots can learn 
generalized features while training the 
model onboard and share the model 
updates from one location to another 
to support the collaborative training 
for distributed learning and real-time 
situational awareness.  Also, simulating 
physical autonomous systems with 
virtual entities allows exploring 
complex interactions between 
collaborating agents at scale.  Virtual-

physical co-simulation mitigates 
costly environments populated 
by large numbers of autonomous 
entities.  A high-level overview of 
these approaches and a case study 
to overcome challenges of real-time 
adaptability and experiment scalability 
in multiagent teaming are presented in 
this article.

INTRODUCTION
Current conflicts in Eastern 
Europe and the Middle East have 
demonstrated a new reliance on 
autonomous assets to augment 
various tasks in highly lethal 
battlefield environments.  Therefore, 
it is imperative to understand how 
such robotic agents can efficiently 
and effectively communicate and 
collaborate among themselves as well 
as with human decision-makers to 
ensure battlefield dominance in real 
time.  For example, the Ukrainian 
military has employed a hunter-killer 
style drone team where one unmanned 
aerial vehicle (UAV) is used to find 
enemy positions and another UAV 
drops a munition or the UAV itself is 
used as a disposable kinetic munition.

The research on multiagent teaming 
(MAT) is an area that remains less 
explored due to expensive resources to 
properly investigate on a realistic scale.  
Optimizing asset deployment in a 
vast area of interest (AOI) will require 
proper simulation in comparable scales 
and environments (e.g., open pastures 
and dense urban settings) or terrain 

features (e.g., vegetation, forests, and 
deserts) to the real-world scenario.  
To that end, virtual reality can bridge 
the gap in scalability by augmenting 
real-world assets and physical 
environments in determining the 
resources required for desired effects.

To achieve the maximum effect of 
MAT, it is imperative to understand 
how these collaborating autonomous 
agents can communicate with each 
other and complete tasks in an 
efficient manner.  Emulating this 
scenario in the virtual world and 
combining it with the information 
obtained from various physical sources 
of intelligence can help to learn and 
understand the perception capabilities 
and collaborative behaviors of 
autonomous assets for mission success 
in the real world.  Simulating physical 
autonomous systems with virtual 
entities allows exploring complex 
interactions between collaborating 
agents at scale.  Furthermore, virtual-
physical co-simulation mitigates costly 
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environments populated by large 
numbers of autonomous entities.

COLLABORATIVE 
SITUATIONAL AWARENESS 
WITH MULTIAGENT 
FEDERATED LEARNING
Without sharing all the data, an 
object detection model learned in 
one environment (e.g., Site 1) can be 
leveraged to transfer to another remote 
location (e.g., Site 2).  If collaboration 
can be enabled among several deployed 
robots in different zones, it is possible 
to develop a generalized terrain and 
object detection model that captures 
greater uncertainty and variability 
in an environment.  Conventionally, 
to realize this, data sharing between 
agents and servers is warranted; 
however, this may introduce a security 
risk.

Federated class-incremental learning 
can be a useful approach to mitigate 
this issue.  It allows multiple clients 
in a distributed environment to learn 
models collaboratively from evolving 
data streams where new classes 
arrive continually at each client.  
This technique helps accelerate the 
machine-learning (ML) model training 
process without directly sharing the 
raw data and pretrained models across 
multiple clients and only sharing 
the weighted average of the model 
parameters between them.  This aids 
in collaborative training by sharing 

knowledge from one geolocation to 
another while preserving privacy, 
minimizing the opportunities for data 
breaches, increasing the robustness of 
ML models, and reducing the training 
overhead and time substantially.

Investigating a remote zone 
reconnaissance scenario by relying on 
multiple distributed virtual remote 
sites using federated and continual 
learning is a novel research direction.  
The object detection model can be 
trained using federated learning 
in which training data will not be 
explicitly shared between robots 
performing terrain reconnaissance 
in various geolocations.  The robots 
should learn generalized features while 
training the model onboard and share 
the model updates from one location 
to another to support the collaborative 
training for distributed situational 
awareness.

For example, an object such as a 
bridge seen at a location can be 
learned by the autonomous agents 
there and transferred with minimal 

model parameters using federated 
learning to another location where 
the autonomous agents have not been 
trained to detect such a bridge, as 
shown in Figure 1.  Collaborative 
training detects it in both locations 
by extending the learning securely 
to another autonomous agent in real 
time.  This approach enables real-time 
collective situational awareness in an 
environment with minimal computing 
and training overhead, facilitating 
distributed and collaborative model 
training and remote learning.

SEAMLESS 
INTEROPERABILITY AND 
SCALABILITY ACROSS 
HETEROGENEOUS ASSETS
Heterogeneity across robotic assets 
presents challenges for collaborative 
tasks.  In addition to the inherent 
differences between unmanned ground 
vehicles (UGVs) and UAVs, unmanned 
X vehicles are manufactured by 
different vendors and have different 

Figure 1.  Secure Collaborative Training for ML Model Building (Source:  N. Roy).
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versions of autonomy stacks and 
software packages.  For example, 
the simultaneous localization and 
mapping (SLAM) packages of UGV 
Jackals from Clearpath Robotics use 
Google’s Robot Operating System 
(ROS) Cartographer; ROSbots from 
Husarion Inc. employ Hector SLAM 
packages; and modal AI RB5/
Seeker drones rely on visual inertial 
odometry to support localization 
capabilities and volumetric pixels 
(voxels) for the mapping elements 
in their SLAM implementation.  
Interoperability across these packages 
while successfully transmitting the 
packets from one agent to another is 
a nontrivial research and development 
task.

A collaborative SLAM infrastructure 
involves data from multiple 
heterogeneous interoperable agents 
with different views of the same 
environment [1, 2].  The local views 
from multiple different agents are 
combined to create a global view 
of the sensing environment [3].  
Moreover, calibrating and tuning 
SLAM parameters and sensitivity 
factors during the global map creation 
of an area are very important to 
successfully navigate a terrain using 
multiple robots.  Therefore, software 
interoperability across ROS in virtual 
and physical environments is achieved, 
resulting in seamless connectivity 
and communication between multiple 
heterogeneous agents.

VIRTUAL-PHYSICAL 
CO-SIMULATION 
OF AUTONOMOUS 
NAVIGATION
Understanding the nature of terrain 
even before the deployment of 
autonomous robotic assets in the 
environment is important.  Virtual-
physical co-simulation allows optimal 
path planning to be determined in 
an AOI.  Such a priori knowledge 
minimizes the risks and resources for 
allocating expensive autonomy assets 
in vast regions prior to deployment.

The first step in the simulation is to 
deploy all the autonomous agents 
in the virtual setting to simulate the 
path planning and coverage of sensing 
needed in the AOIs.  The specific 
models of the UGVs/UASs in Gazebo 
and Unity can be deployed and the 
synthetic data generated from all the 
sensors, such as light detection and 
ranging (LiDAR); red, green, and blue; 

and inertial measurement units for 
mapping and navigation.

Second, a mixed version of the prior 
setup is emulated with a few agents 
in the virtual environment covering a 
specific side of the terrain and some 
agents in the physical environment 
covering the other side.  This designs 
the optimal path planning and 
minimizes the sensing overlap (and 
maximizes coverage) while detecting 
the objects, obstacles, adversaries, and 
other artifacts for making intelligent 
collaborative decisions using a swarm 
of UGVs and UASs.  The interactions 
of robotic assets with virtual-physical 
environments are accurately modeled 
to represent behavior in the real world.  
The multiagent perception-action-
communication loop cross-cutting 
between virtual and physical agents is 
being executed in the virtual-physical 
environment.  Considering these 
factors, the robotic agent deployment 
planner can be designed while 
achieving the optimal path planning, 
sensing, and coverage of an area in the 
presence of adversaries.

An adaptive learning system within 
autonomous robotic agents is 
developed and integrated to enable 
real-time strategy adjustment in 
response to dynamic environmental 
changes and unforeseen challenges.  
With a focus on advancing the 
intelligence and adaptability of 
autonomous systems, a framework is 
created where UGVs/UASs can not 
only follow preplanned paths and 
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strategies but also learn from the 
environment and adjust their actions 
in real time.  This adaptive learning is 
crucial in unpredictable environments 
where conditions can change rapidly 
or new obstacles and threats can 
emerge unexpectedly.  Therefore, a 
key step is to develop a hierarchical 
objective-driven navigation system 
based on topological maps and novel 
learning algorithms to enable efficient 
path-finding and decision-making in 
environments with sparse rewards 
where feedback (rewards or penalties) 
for autonomous agents is minimal.

REDUCING TOPIC 
DISSEMINATION 
OVERHEAD
In a virtual-physical co-simulation 
environment, information 
communication and exchange 
from physical and virtual space are 
established in multiagent scenarios for 
performing collaborative tasks such 
as object detection, scene perception, 
navigation, and route planning.  
Virtual and physical autonomous 
agents share the common world model 
as if they are collaborating in the real 
environment.  In data sharing, it is 
imperative to reduce the overhead 
during ROS message passing and 
control with maximal information 
gain, minimal communication 
overhead, and maximum computing 
efficiency, as the communication 
network in the real world can be 
brittle and scarce.

One of the main challenges in the 
virtual-physical environment co-
simulations is handling the underlying 
packet delays between simulators 
(Unity and Gazebo) and physical 
autonomous assets.  Consider 
multiagent SLAM tasks where several 
autonomous agents explore and map 
an environment.  Various ROS topics 
are being generated from each agent 
and transmitted over the wireless 
channels in the virtual and physical 
space as robots move around and scan 
an area to navigate.  Even with a single 
agent, it is expensive to send all the 
ROS messages/topics from the robot’s 
two-dimensional or three-dimensional 
(3-D) LiDAR, photographic imagery, 
or laser scanning to the master node.  
How can the agent send only essential 
information, metadata, or semantic 
knowledge of the environment?  A 
solution to this question will reduce 
communication and computing 
overheads and reduce the network 
payload and delay in the simulation 
environment.

SLAM algorithms rely on flat 
representations of point cloud data and 
do not explore semantic relationships 
between objects, agents, structure, and 
their spatial arrangements [4].  To that 
end, a lightweight version of SLAM 
can be implemented, such as a spatial 
perception engine using dynamic scene 
graphs that capture the hierarchical 
relationships between the artifacts 
in the environment.  This version 
can represent the high-level spatial 
concepts and relations rather than just 
lines, planes, points, and voxels.

Moreover, novel packet-filtering 
schemes and skip-window strategies 
can be employed to intelligently 
disseminate ROS topics from one 
agent to another, either situated in 
virtual or physical space, to reduce the 
number of messages being published 
and subscribed.  This, in effect, will 
help improve the network’s quality 
of service (QoS).  An additional 
solution is leveraging the ROS2-based 
framework (masterless) in combination 
with topic aggregation and a selective 
unicast packet dissemination strategy 
instead of broadcasting all the ROS 
topics randomly from one agent to 
another or to a master node [1, 5].

CASE STUDY
In this section, a case study performed 
as part of the August 2024 Summer 
Field Experiments at the U.S. Army 
Research Laboratory (ARL) Robotics 
Research Collaboration Campus 
(R2C2) in Graces Quarters (GQ), MD, 
will be discussed.  AI-enabled decision 
making in multiple domains within 
complex and dynamic environments 
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will be addressed.  Army capabilities 
like integrating data from all domains, 
reasoning across explicit and tacit 
knowledge, and supporting forces in 
both physical and information spaces 
will be covered.

The Army-relevant scenario of this 
field experiment involved a route 
reconnaissance, operational scenario 
representing challenges associated 
with autonomous navigation with 
seen and unseen object detection.  It 
also involved avoidance in complex 
and noisy environments for which 
a commander conducted maneuver 
and intelligence decisions across 
multiple agents and modalities from 
different geolocations.  The experiment 
showcased execution of remote voice 
command, obstacle avoidance, and a 
bridge-crossing task that was utilized 
to tie the specific elements of the 
research and contribute to aspects 
along the AI-enabled, intelligent 
decision-making cycle.  The aspects 
of the following key research and 
development thrusts were addressed:

•	Digital twin with photogrammetry 
rendering via Unity and synthetic 
data collection and annotation 
(Figure 2).

•	Collaborative training with virtual-
physical ML model building and 
minimal real data collection and 
annotation (Figure 2).

•	Building privacy-aware new 
classes with learning from distant 
Distributed Virtual Proving Ground 
(DVPG) sites and federated class 
incremental learning.

•	Autonomous navigation with object 
detection and avoidance and LiDAR 
semantic-segmentation-based 
navigation.

•	Remote voice command with robot 
goal initialization using the DVPG 
network and voice enhancement 
with battleground noise.

As part of this collaborative research 
effort, components leveraging ARL’s 
DVPG infrastructure to geographically 
distributed facilities and capabilities  
to perform joint mission and 
experiments across simulation and 
physical environments with robots 
were illustrated, as shown in Figure 2.   
The ability to interpret spoken 
instructions across the DVPG from 
a remote commander amidst noisy 
environmental conditions was also 
demonstrated.

In this collaborative remote robotics 
experiment, a UGV called Jackal was 
stationed at ARL’s R2C2 in GQ’s 
physical and virtual environments.  
Two other Jackals were stationed in 
two different geolocations—one in 
Maryland Robotics Center (MRC) at 

the University of Maryland College 
Park (UMCP) and the other one in 
the Center for Real-Time Distributed 
Sensing and Autonomy (CARDS) 
at the University of Maryland 
Baltimore County (UMBC).   Student 
commanders were present at UMCP 
and UMBC campuses to showcase 
how the remote learning, collaborative 
training, and automatic speech 
recognition (ASR) relying on multiple 
virtual and physical sites could help 
enhance the situational awareness in 
contested environments.

Three research contributions were 
the focus—ASR, virtual physical 
collaborative training, and new 
class learning via Federated Class 
Incremental Learning (FCIL).  The 
virtual physical collaborative training 
was shown first, with ASR in a virtual 
GQ environment.  UMCP student 
commanders were then asked to give 
the voice command to invoke the ARL 
ROS Unity Simulator at GQ.

A large set of photogrammetry data 
of the broken car and bridge in GQ 
was collected to integrate these objects 

Figure 2.  Digital Twin for Virtual-Physical ML Model Building (Source:  N. Roy).
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with the ARL’s existing digital twin 
version of the GQ environment.  
Moreover, synthetic data about the 
broken car and bridge was collected.  
The LiDAR semantic segmentation 
in a virtual world was implemented 
to detect the broken car and bridge 
as well as autonomous navigation to 
avoid cars and successfully cross the 
bridge in a virtual GQ environment.  
The objective of the virtual experiment 
was to reinforce that meaningful 
synthetic data could be collected and 
annotated properly to implement 
collaborative training between virtual 
and physical sites.  As part of the 
GQ virtual experiment, as shown in 
Figure 3, the rendering of the physical 
site of GQ inside Unity through the 
remote command and navigating the 
robot in physical (GQ) and virtual 
(Unity) spaces were executed by the 
student commander from UMCP  
using the DVPG network.

Next, the experiments showed 
autonomous navigation while avoiding 
the broken car and successfully 
crossing the bridge at the physical 
GQ site through collaborative training 

and remote learning.  An ROS board 
interface was implemented for 
publishing and subscribing all the 
ROS topics across multiple physical 
and virtual sites, as well as a domain 
adaptation technique between virtual 
and physical sites using synthetic 
and real datasets.  As part of this 
experiment, student commanders at 
the UMBC DVPG site were asked to 
give the voice command to achieve 
the mission of bridge crossing at 
the physical GQ site while avoiding 
obstacles like a broken car.  This case 
study represented the first contribution 
of the ASR and collaborative training 

using real and synthetic data collected 
from multiple virtual and physical sites 
to improve situational awareness.

The second contribution was based 
on new class learning using the FCIL 
technique, as shown in Figure 4.  In 
this part of the experiment, data was 
collected from the two remote physical 
sites of GQ DVPG—MRC at UMCP 
and CARDS at UMBC.  Data of the 
new class bridge was also collected 
with tree logs at UMCP and another 
new class human at UMBC, as shown 
in Figure 5.  (Note that the physical 
and virtual GQ agents were not 

Figure 4.  Building Privacy-Aware Machine Learning Model From Multiple Remote 
DVPG Sites (Source:  N. Roy).

Figure 5.  Sharing Model Parameters for Unseen Classes From Remote DVPG Sites 
(Source:  N. Roy).

Figure 3.  Remote Voice Command in  
a Virtual GQ Environment (Source:   
N. Roy).
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trained with these two new classes 
during the first collaborative training 
experiment.)

Using the federated class incremental 
learning, the weighted average of the 
model parameters from UMCP and 
UMBC to the GQ physical site was 
transferred to see if the new class 
human and bridge with tree logs were 
being detected and avoided.  This 
enabled the UGV Jackal in GQ to 
navigate autonomously—this time, the 
Jackal in GQ did not cross the bridge 
due to the fallen tree logs.

This case study depicted the second 
contribution.  This field experiment 
attested the value of automatic speech 
recognition, collaborative training, 
and distributed remote learning from 
different geolocations in the presence 
of a digital twin, which has many 
potential applications for a multitude 
of civilian and military applications.

RESEARCH AREAS OF 
OPPORTUNITY
Based on preliminary investigations 
presented here, there are many 
real-world challenges to explore 
in a virtual-physical co-simulation 
framework.  The autonomous agents’ 
interoperability, calibration, and 
parameter tuning issues from software 
integration perspectives must be 
considered first.  For path planning, 
navigation, and sensing with a minimal 
number of autonomous agents, the 

optimal allocation of robotic assets is 
necessary where there are no unlimited 
autonomous assets available in the real 
world.  Furthermore, universal data 
models that are compact, accessible 
across many programming languages, 
and efficient on the network need to 
be developed.  Such models need to 
also support future scalability.

CONCLUSIONS
Increased incorporation of 
autonomous-system interactions 
is anticipated.  Autonomous drone 
swarms, unmanned ground vehicles, 
and packs of quadrupedal robots are 
no longer novel technologies.  To 
ensure the use of these robots is 
effective, real-world challenges in the 
interactions among the collaborating 
robots need to be understood [6–9].  
Research is being done on how 
detecting an object by an agent can 
be learned by other agents in another 
location by using federated learning to 
securely transfer with minimal model 
parameters.

Further, software interoperability 
across heterogeneous robotic 
assets and real-time, 3-D semantic 
segmentation by transferring and 
sharing knowledge using federated 
learning models from distributed 
remote sites are being investigated.  
Finally, virtual-physical co-simulation 
is a novel experimentation approach 
that could be used toward scaling the 
number of agents to advance various 
robotics simulations in emerging 
application domains. 
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SUMMARY

T his article presents a 
standardized technique 
to evaluate the navigation 

performance (position, velocity, and 
principal axes) of an airborne system 
and develop an efficient methodology 
to define the number of target data 
points to process during the planning 
phases of testing.  This technique gave 
statistical credibility and rigor to the 
test while saving time and funds and 
with the minimum amount of data to 
achieve significant results.

Three units under test (UUTs) were 
used that underwent ground and flight 
tests alongside a reference system.  
The proposed methodology involved 
calculating the Pearson correlation 
coefficient to find intervals of random 
error.  These intervals were used to 
pick out the data points to use for 
calculating error.  For a more complete 
analysis, the error calculated using this 
methodology was shown alongside 
available data.

The difference between the two 
methods of calculating error was 
nearly negligible across all UUTs and 
time, space, and position information 
(TSPI) columns of interest, with 
multiple instances of 0% difference.

INTRODUCTION
Since its inception, engineers 
and scientists have continuously 

worked to enhance the accuracy 
and precision of global positioning 
system (GPS) and inertial navigation 
system (INS) technologies [1].  These 
efforts have focused on overcoming 
inherent system limitations and 
environmental challenges, enabling 
reliable performance in a wide range 
of applications.  GPS and INS systems, 
while individually robust, are often 
integrated into hybrid configurations 
to capitalize on their complementary 
strengths.  For example, embedded 
GPS and INS packages combine the 
long-term accuracy of GPS with the 
short-term stability of INS, allowing 
for multiple navigation modes and 
improved system redundancy [2–5].  
This integration mitigates errors 
associated with each standalone 
system, such as GPS signal degradation 
in obstructed environments or INS 
drift over extended durations.

To further enhance performance, 
many navigation systems incorporate 
real-time error estimation algorithms.  
These algorithms leverage statistical 
models to quantify and correct for 
errors in position, velocity, and 
orientation during operation [6, 7].   
By continuously refining their 
estimates, such systems provide users 
with more accurate and reliable 
navigation solutions.  For instance, 
state-of-the-art error estimation 
techniques often utilize Kalman 
filtering or similar probabilistic 
approaches to fuse sensor data and 
predict system accuracy [8, 9].

Accuracy measurements for navigation 
systems are typically evaluated in the 
Earth-centered, Earth-fixed (ECEF) 
coordinate system, which defines 
errors in the X, Y, and Z directions as 
∆Xi, ∆Yi, and ∆Zi , respectively.  These 
errors can result from various sources, 
including signal multipath, atmospheric 
disturbances, and sensor noise.  
Quantifying these errors is critical 
for system validation, particularly 
in applications with stringent 
performance requirements, such as 
aviation and autonomous vehicle 
navigation.  While numerous metrics 
exist for assessing navigation accuracy, 
two are commonly employed—spherical  
error probable (SEP) and root mean 
squared (RMS) error.

SEP provides a probabilistic measure 
of positional accuracy, defining 
the radius within which a certain 
percentage of positional estimates fall 
[10].  However, this article focuses on 
RMS, a metric that directly quantifies 
the average magnitude of errors in all 
three spatial dimensions.  RMS offers 
a straightforward and comprehensive 
means of comparing system 
performance under various conditions.

To further enhance 
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When designing a test to evaluate 
GPS accuracy, a central question 
arises:  “How much data is enough?”  
This question often sparks debate 
among stakeholders.  Engineers 
and system developers, aiming to 
maximize statistical reliability, typically 
advocate for collecting as much data 
as possible.  Conversely, financial 
analysts and project managers, focused 
on minimizing costs and resources, 
push for constraints on data collection 
efforts.  Striking a balance between 
these competing priorities requires 
careful statistical planning during the 
test design phase.  By incorporating 
foresight into the expected number of 
observations, it is possible to achieve 
a rigorous analysis without excessive 
resource expenditure.

One of the foundational statistical 
tools for addressing sample size 
requirements is the Student’s 
t-Distribution, a widely used approach 
for analyzing small datasets.  This is 
particularly effective when the goal 
is to estimate the mean of a normally 

distributed population where the 
sample size is small and the population 
standard deviation is unknown [11].  
A commonly cited rule of thumb 
suggests that a minimum of 30 data 
points is sufficient to utilize the 
t-Distribution effectively [12].  This 
threshold is rooted in the central 
limit theorem, which states that the 
sampling distribution of the mean 
approaches normality as the sample 
size increases, even if the underlying 
population distribution is not 
perfectly normal [13, 14].  For small 
samples, the t-Distribution provides a 
robust framework with well-defined 
properties, including n − 1 degrees 
of freedom and an expected mean 
of zero, variance of 1, and standard 
normal behavior, denoted as N ∼ (0,1).

However, determining the appropriate 
sample size involves more than 
adhering to arbitrary thresholds.  The 
choice of 30 data points assumes that 
the data represent the population and 
that the chosen distribution accurately 
models the underlying behavior.  If 
these assumptions are violated—such 
as when the data exhibit significant 
skewness, kurtosis, or outliers—
additional considerations must be 
made [15, 16].  For example, heavily 
skewed distributions may require 
larger sample sizes to achieve reliable 
results, while data with outliers may 
necessitate robust statistical methods 
or preprocessing to mitigate their 
influence [17]. 

An equally critical aspect of sample 
size determination is defining what 
constitutes a valid data point.  In 
GPS accuracy testing, a “data point” 
often corresponds to a discrete event 
or observation, such as a position 
fix or navigation update.  The 
temporal and spatial resolution of 
these observations can significantly 
impact the test results.  For instance, 
higher-frequency data collection may 
capture transient anomalies that lower-
frequency sampling would miss, while 
excessive sampling may introduce 
redundancy without adding meaningful 
information [18].  Understanding these 
trade-offs is essential for ensuring 
that the collected data is sufficient and 
efficient for the intended analysis.

While many test designs rely on 
post-hoc statistical power analysis to 
validate results after data collection, 
this approach can be inefficient and 
costly.  By integrating statistical 
planning into the test design 
process, planners can optimize data 
collection strategies, reduce resource 
consumption, and improve the overall 
reliability of their findings.  Techniques 
such as power analysis, sensitivity 
analysis, and simulation-based methods 
can help refine sample size estimates 
and identify the minimum data 
requirements for achieving statistically 
significant results [19, 20].

Ultimately, the process of determining 
how much data is enough depends 
on a nuanced understanding of the 
statistical properties of the chosen 

One of the foundational 

statistical tools for 

addressing sample size 

requirements is the Student’s 

t-Distribution, a widely used 

approach for analyzing small 

datasets.
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methodology and the specific 
objectives of the test.  This article 
aims to address these challenges by 
proposing a systematic approach 
to defining valid data points and 
evaluating sample size requirements in 
the context of GPS accuracy testing.

With a t-Distribution and the 
widely accepted target of 30 data 
points established, the next step is 
to clearly define what constitutes a 
valid sample.  While the conceptual 
process of selecting data points may 
appear straightforward, the practical 
implementation often introduces 
complexities that can compromise the 
validity and reliability of results [21].  
A data sample in GPS accuracy testing 
is typically tied to a specific event 
like a position update or navigation 
fix recorded during the operation of 
the system under test.  However, the 
characteristics of these events—such as 
their temporal spacing, environmental 
conditions, or measurement noise—can 
significantly influence the outcomes of 
subsequent analyses.

A key challenge in this process is 
ensuring that the selected data points 
are representative of the underlying 
system behavior and relevant to 
the test objectives.  For instance, 
if the test environment includes a 
mix of benign and degraded GPS 
conditions, the sampling strategy 
must account for this variability to 
avoid skewed results.  Oversampling 
events in benign conditions could 
mask the system’s true limitations, 
while focusing disproportionately 

on degraded scenarios might inflate 
error metrics and lead to overly 
conservative conclusions.  Additionally, 
the temporal distribution of data 
points plays a crucial role.  Sampling 
intervals that are too short may 
introduce autocorrelation effects, 
where consecutive measurements are 
highly dependent, violating statistical 
independence assumptions [22].  
Conversely, overly long intervals 
may fail to capture transient system 
behaviors critical to navigation 
performance evaluations.

In practice, many test planners adopt 
a comprehensive approach, utilizing 
all available data to calculate system 
accuracy.  This approach often 
ensures that the results reflect the 
full spectrum of operating conditions 
encountered during the test.  However, 
it can also lead to inefficiencies, such 
as processing redundant or irrelevant 
data, and may obscure critical insights 
into system performance under specific 
conditions.  Moreover, relying on post-
execution statistical power assessments, 
as is often the case, limits the ability to 

adapt data collection strategies in real-
time, potentially compromising test 
outcomes [23].

To address these challenges, it is 
necessary to develop a systematic 
methodology for identifying valid data 
points.  Such a methodology should 
consider the statistical properties of 
the data and the practical constraints 
of the test environment.  For example, 
criteria for data selection might 
include thresholds for measurement 
uncertainty, filtering for specific 
environmental conditions, or 
stratification by navigation mode or 
operational phase.  By incorporating 
these criteria into the test design 
process, planners can ensure that 
the selected data points provide 
meaningful insights while maintaining 
statistical rigor.

The assumption that 30 data points 
are sufficient for statistical significance 
also warrants scrutiny.  Although 
this threshold is often a general rule 
of thumb, its applicability depends 
on several factors, including the 
underlying distribution of the data, the 
presence of outliers, and the desired 
level of confidence in the results 
[24–26].  For example, in cases where 
the data exhibit significant skewness or 
heavy tails, larger sample sizes may be 
required to achieve reliable estimates 
of central tendency and dispersion.  
Conversely, in well-controlled 
environments with low measurement 
noise, fewer data points may suffice 
to achieve the same level of statistical 
power [27].

If the test environment 

includes a mix of benign and 

degraded GPS conditions, 

the sampling strategy must 

account for this variability to 

avoid skewed results.
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The equations and concepts that 
underlie GPS and INS performance 
evaluations have been extensively 
applied in ground [28, 29] and 
airborne [30] systems, serving as the 
basis for establishing their suitability 
as reference systems.  These efforts 
have culminated in developing highly 
accurate and well-characterized 
navigation systems, many of which 
remain benchmarks in the field [31].

However, a critical question often 
overlooked in these applications is 
what methodology is used to select 
the data points that form the basis of 
performance evaluations.  While it 
is common practice to calculate the 
three-dimensional (3-D) error using  
all available data, this approach, 
while comprehensive, is not 
without drawbacks.  Processing 
large datasets indiscriminately can 
lead to inefficiencies in terms of 
computational resources and test 
planning efforts, particularly when  
cost and time constraints are 
significant.

In specialized fields like navigation 
performance testing, where technical 
applications are highly specific, much 
of the expertise and methodologies is 
often passed down informally through 
experience rather than systematically 
documented.  This reliance on 
institutional knowledge can create 
challenges in maintaining consistency 
and rigor, particularly when personnel 
turnover results in the loss of statistical  
analysis subject matter experts.  As  

such, the development of a standardized,  
repeatable methodology for test 
planning is not just beneficial but 
essential for sustaining high standards 
within the testing community.

The traditional approach of leveraging 
all available data for analysis 
undoubtedly ensures that performance 
metrics represent the test conditions.  
However, this exhaustive approach 
can obscure opportunities to optimize 
the testing process, especially during 
the planning phase.  A more efficient 
strategy involves defining what 
constitutes a valid data point in the 
context of the test objectives and 
using this definition to estimate the 
minimum sample size required for 
statistically significant results.  By 
narrowing the scope to a subset 
of data that is representative and 
relevant, test planners can achieve dual 
goals of maintaining statistical rigor 
and reducing unnecessary resource 
expenditures.

This article proposes a novel 
methodology aimed at addressing these 
challenges, particularly by moving 
beyond the traditional reliance on 
Student’s t-Distribution assumptions.  
While the t-Distribution provides 
a robust framework for estimating 
population parameters under certain 
conditions, its utility in practical 
test planning is limited when the 
criteria for data selection and the 
characteristics of the dataset are poorly 
defined.  By incorporating a systematic 
process for identifying valid data 
points, grounded in statistical tools 
like error interval calculations and 
correlation analyses, this methodology 
enables test planners to answer the 
critical question of how much data is 
enough with greater precision.

The remainder of this article details 
the development and application 
of this methodology, illustrating its 
potential to streamline the planning 
phase of navigation performance tests.  
The proposed approach offers a way to 
predefine data collection requirements 
that ensures efficiency and reliability, 
ultimately supporting the broader 
objective of delivering rigorous and 
cost-effective evaluations of GPS and 
INS systems.

METHODOLOGY
This section depicts the bulk purpose 
and focus of this article by presenting 
the approach and technique principals 
that were applied to flight test data.

Processing large datasets 

indiscriminately can lead 

to inefficiencies in terms of 

computational resources 

and test planning efforts, 

particularly when cost 

and time constraints are 

significant.
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Data Characteristics

TSPI was collected at the default 
data rates for each component:  1 Hz 
for GPS and 10 Hz for INS.  These 
data sets were derived from multiple 
UUTs, manufactured by different 
vendors, and deployed on a fixed-wing, 
turboprop transport aircraft.  The 
aircraft, modified for military testing, 
could carry cargo and personnel while 
supporting research and development 
evaluations of the onboard navigation 
systems.  (Specifics beyond this are 
intentionally omitted for security 
reasons and to keep the emphasis of 
this article on the proposed process.)

The characteristics of the tests 
performed on each UUT in ground-
based and airborne environments 
under varying conditions are shown 
in Table 1 and include the hours of 
ground test/flight tests, benign or 
degraded environments, range of 
velocity and position, and flight time 
in a degraded environment for 85 
hours of testing across three different 
UUTs.

Each TSPI dataset consisted of 10 
distinct columns:  VX, VY, VZ (velocity 
components), PX, PY, PZ (ECEF 
position components), roll, pitch, yaw, 
and time.  Here, P represents the ECEF 
positions along the three Cartesian 
axes, while yaw describes the rotation 
of the body axis.  The datasets were 
intentionally standardized across 
UUTs to maintain consistency in 
comparisons.

The Ultra-High Accuracy Reference 
System (UHARS), built and maintained 
by the 746th Test Squadron (746 TS)  
at Holloman Air Force Base (AFB), 
NM, served as the standard reference 
system for these evaluations.  
UHARS is regarded for its ability 
to deliver highly precise positional 
and navigational data, even in 
challenging environments, making it 
an ideal benchmark for assessing the 
performance of emerging navigation 
systems.  A critical characteristic of 
a reference system is its inherent 
accuracy and precision relative to 
the UUT.  For robust testing, it is 
generally accepted that the reference 

system’s accuracy should exceed 
that of the UUT by at least an order 
of magnitude.  This ensures that 
the reference system’s contribution 
to overall error is negligible when 
quantifying the performance of the 
UUT.

The technical justification for this rule 
of thumb is rooted in the propagation 
of uncertainty during error 
calculations.  If the reference system’s 
error approaches the error of the UUT, 
it becomes challenging to differentiate 
between the inherent inaccuracies of 
the UUT and the limitations of the 
reference system itself [32, 33].  By 

UHARS is regarded for its 

ability to deliver highly precise 

positional and navigational 

data, making it an ideal 

benchmark for assessing the 

performance of emerging 

navigation systems.

Table 1.  Demographics of Flight Test Data From Three UUTs Flown on the Same Aircraft Across Multiple Sorties (Source:  N. Ruprecht)

DEMOGRAPHIC CONFIGURATION UUT1 UUT2 UUT3 TOTAL TEST TIME  
(HR)

Static vs. dynamic
Time in flight (hr) 9.4 30.3 18.81 58.51

Time on ground (hr) 5.79 15.87 5.06 26.71

Environment
Time with degraded GPS (hr) 6.38 17.47 11.06 34.91

Time in clear air (hr) 8.8 28.7 12.81 50.31

Other characteristics

Flight time with degraded GPS (hr)
Range of velocity (m/s)
Range of 3-D position (m)

5
117.65
3163.79

15.96
124.33
3163.79

11.06
124.33
2963.32

32.01

Total UUT time (hr) 15.18 46.17 23.87 85.22
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maintaining an accuracy margin of 
10:1, the reference system effectively 
isolates the UUT’s performance 
characteristics.

For instance, if the reference system’s 
positional accuracy is ~1 cm, it can 
reliably assess a UUT with positional 
errors near 10 cm or greater without 
introducing significant ambiguity 
into the results.  The referenced 
“10× accuracy rule” is also rooted in 
practical testing heuristics, where the 
reference system is expected to be an 
order of magnitude more accurate 
than the system under test.  This is 
also known as the Gagemaker’s Rule 
or Rule of Ten.  It has been associated 
with military standards like MIL-
STD-120 released in 1950 but has 
shifted to a 25% tolerance and is 
becoming increasingly challenging to 
maintain in all cases [34].

Additionally, ISO/IEC 17025, a global 
standard for testing and calibration 
laboratories, highlights the need for 
traceability and rigorous uncertainty 
analysis to ensure that the reference 
system’s errors do not compromise 
the integrity of the test results 
[35].  By maintaining this high level 
of accuracy, UHARS ensures that 
observed deviations during testing 
can be confidently attributed to the 
performance of the UUTs rather than 
errors introduced by the reference 
system.  This approach upholds the 
statistical credibility and reliability 
required for evaluating navigation 
system performance, particularly 

in environments where precision is 
critical.

Proposed Technique

There are multiple sources of errors 
related to GPS.  These errors are 
made up of time-correlated and 
nontime-correlated components 
[36, 37].  Inertial systems also have 
correlations due to their inherent 
growth in inertial sensor error [38].  
To characterize a system, the errors 
that are evaluated at a certain time 
should be uncorrelated (correlation 
coefficient zero) of any other [39, 40].  
Note that this process requires the data 
to have zero correlation but not zero 
dependence, where correlation is the 
measure of linear dependence.  Since 
the UUT and reference system will 
have similar distribution of errors for 
a given column and one does not affect 
or impact the other, the systems are 
assumed independent and identically 
distributed.

The overall process presented to 
evaluate the navigation performance  
of airborne systems follows four steps:

1.	 Align, interpolate, and clip data 
so that data analyzed records the 
UUT and reference system.

2.	 Find correlation coefficient 
for k number of lags and save 
the first occurrence k of zero 
autocorrelation (ZAC) for each 
column of interest.

3.	 Calculate RMS error at modulus 
intervals of previous step between 

the UUT and corresponding 
reference data point.

4.	 If the target system specification 
(population mean) is known, use 
(a).  Otherwise, use (b), where (a) 
runs a hypothesis test given these 
sample errors, target specification, 
standard deviation, and number of 
samples collected at those intervals 
(thus saving and presenting 
the hypothesis test result and 
corresponding t-statistic and one-
sided p-value for each column of 
interest) and (b) creates a single 
tailed, upper bound confidence 
interval for these sample errors, 
number of samples collected, 
and chosen α for each column 
of interest.  Also calculated is 
the RMS error (Step 3) using all 
available data to show side-by-side 
comparison of techniques and that 
the two are comparable.

Algorithm 1 (Figure 1) is used to 
preprocess the TSPI data collected 
during each test.  If the UUT and 
reference system are not precisely 
synchronized for recording and 
sample at different GPS times, this 
script aligns the two sets of data by 
finding the minimum error between 
the time columns and assigning that 
row to the final reference variable to 
be used.  If the sampling frequencies 
of the two systems are different, the 
script still accounts for this using 
minimum error and may then list 
the same row multiple times.  The 
“while” loop is used in case the system 
recording starts or ends before/after 
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the other system.  It will log the index 
for the first time the two variables 
show alignment and the last, therefore 
clipping the UUT and ref variables.

After preprocessing and data cleaning, 
each column of interest is compared 
to itself to check for correlation 
(autocorrelation).  Each index is 
compared to every other as the data is 
shifted by its entire length to find the 
Pearson correlation coefficient for each 
lag.  Given measurements Y1, Y2 , ...,  
YN at time X1, X2, ..., XN , the lag k 
autocorrelation function is defined in  
Equation 1 as follows:

	 .	 (1) 

Algorithm 2 (Figure 2) finds the 
coefficient of each data sample 
compared to a shifted vector (lag) of 
itself using a Python function that 
utilized this equation.  There may be 
multiple instances of zero correlation 
between data points and therefore 
multiple intervals that can be used to 
build a data array.  To have the least 
amount of time between points, this 
script looks for the first occurrence of 
zero correlation for each TSPI column.

After the smallest interval between 
uncorrelated data, Algorithm 3  
(Figure 3) goes back through the 
UUT data to calculate error.  Using 
the modulo function, if i is a multiple 
of the index for a given column, that 
data point in UUT is used against the 
reference system at that same point 
in time (or closest to referring to 
Algorithm 1 in aligning).  With arrays 
of absolute errors, the dataset can 
now be analyzed knowing its errors 
are random or uncorrelated.  In this 
case, the RMS, standard deviation, and 
number of data points of each column 
(N ) are saved to Stats.

Finally, Algorithm 4 (Figure 4) shows 
the final piece of characterizing the 
UUT.

Using the Stats variable, a single-
mean, t-statistic is calculated based on 
error as defined by Equation 2, where 
x is the sample mean error given by 
the column’s RMS, s is the sample 
standard deviation, N is the number of 
samples used, and µ is the population 
mean error given by the target 
specification RMS for each column:

	  .	 (2)

With a t-statistic, the single-sided 
p-value can be determined using 
a Python function in the statistics 
library.  With these two knowns, a 
hypothesis test is run with the null  
and alternative defined as H0:  x ≥ µ 
and Ha:  x < µ, with rejecting H0 if  
p < α and t < 0, where α = 0.05 in 
this case.  The reason for this order is 

Figure 1.  Algorithm 1 (Source:  N. Ruprecht).
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to have a starting assumption that the 
UUT error is too great or considered 
“out of spec.”  When using a hypothesis 
test, the null hypothesis cannot be 
“accepted”—only “fail to reject” the 
null.  The UUT would rather be 
proven to be within specification by 
rejecting the current null hypothesis, 
as opposed to fail to reject the idea of 
it being within specification.  Failing 
to reject the null hypothesis can be 
interpreted as meaning that the UUT 
has a greater error than required or 
that not enough data was collected to 
statistically prove the error is less.

RESULTS AND 
DISCUSSION
Raw errors and results are summarized 
next.  Figure 5 shows the difference in 
the ratio between the techniques used.  
The Y-axis on the left corresponds to 
the difference comparing calculated 
RMS error when looking at 
uncorrelated data points vs. error and 
using all available data.  Due to the 
different scales of magnitude for each 
TSPI column unit, a ratio difference 
was used to standardize an output 
for visual representation’s sake.  The 
Y-axis on the right aligns with the 
number of samples used for each 
UUT and TSPI column to achieve 
a statistically significant (p-value 
<0.05) ZAC for RMS calculation and 
evidence-based decision making in the 
number of data points needed for each 
column of interest.

Figure 2.  Algorithm 2 (Source:  N. Ruprecht).

Figure 3.  Algorithm 3 (Source:  N. Ruprecht).

Figure 4.  Algorithm 4 (Source:  N. Ruprecht).
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The figure combines two thought 
processes—the difference in calculated 
error along the left y-axis and the 
number of data points it took to get 
a statistically significant uncorrelated 
error along the right y-axis.  For 
nearly all TSPI columns and UUTs, 
the difference in error calculation 
technique is near zero and therefore 
comparable.  The few instances 
where the differences were larger 
were consistent across UUTs or TSPI 
columns.  Another interesting finding 
is how small N can be and still have 
statistically significant results.  Where 
30 samples are a good rule of thumb, 
this shows that conclusions can be 
drawn with less while, at times, more 
is necessary.  If a representative dataset 
is available, this methodology can be 

used to estimate the target number of 
samples and required test time more 
empirically than as a rule of thumb.  
Overall, negligible difference leans 
into the purpose of this article that 
asserts the methodology presented can 
be used so that the tester can speak 
definitively about how much data, 
flight time, and sorties will be required 
well before the test execution itself.

When evaluating datasets after the 
fact, the aircraft could enter and 
exit degraded environments so that 
the entire flight is broken down to 
intervals of interest.  Here, the results 
of an entire flight can be the sum of its 
parts such that using this methodology 
on each part will have the same 
conclusion as running on the entire 
flight.  An interesting outcome to see is 

how much the interval and number of 
samples used varies for the same flight.  
Looking more into the flight profile, it 
intuitively speaks to these values.

Since correlation is inversely 
proportional to the variance of data 
being used, a repetitive flight such as 
racetracks or orbits will require more 
data to have temporal separation to 
decorrelate.  In contrast, columns with 
higher variance saw the correlation 
coefficient approach zero much 
earlier.  Variance also plays directly 
into the results of the hypothesis test.  
With a higher variance in the flight 
profile, more data points are collected 
due to a smaller time interval before 
decorrelation occurs.  This almost 
equates to a lower variance in the 
flight profile, therefore collecting 

Figure 5.  Calculated RMS Using All Available Data (RMSAll) vs. Calculated RMS With Uncorrelated Values or ZAC (RMSZAC ) (Source:   
N. Ruprecht).
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less data due to a larger interval.  
The t-statistic is therefore mainly 
determined by the RMS error.

CONCLUSIONS
This study presents a foundational 
methodology for determining the 
necessary amount of data required 
to achieve statistically significant 
navigation performance evaluation 
results.  While this approach has not 
yet been extensively validated against 
surveyed systems or multiple reference 
standards, its potential impact on test 
planning and execution is evident.  
The key contribution of this work is 
demonstrating that by leveraging the 
correlation coefficient, an optimal 
sample size can be determined for 
error estimation without relying 
on traditional heuristics such as the 
30-sample rule.

The results presented here indicate 
that for nearly all TSPI parameters 

and UUTs, the calculated root 
mean squared error (RMS) using 
all available data (RMSAll) and the 
RMS derived from statistically 
independent data points (RMSZAC) 
yield nearly identical values.  This 
suggests that decorrelating the dataset 
before error computation does not 
introduce significant bias and can be 
a viable alternative for test planners.  
Moreover, the findings highlight that 
the number of required samples can 
be highly variable, depending on the 
variance and structure of the test flight 
profile.  Repetitive maneuvers, such as 
racetracks or orbits, introduce greater 
temporal correlation and therefore 
require a larger dataset to achieve 
statistical independence, whereas more 
dynamic flight profiles with higher 
variance can decorrelate more quickly.

A key implication of this methodology 
is its ability to assist in defining the 
required test duration and sortie 
count before execution.  By applying 
this method to preexisting UUT 
datasets—without necessitating a 
reference system—engineers can 
estimate the minimum number of 
independent samples needed.  This 
enables more precise test planning, 
ensuring that sufficient data is 
collected without unnecessary resource 
expenditure.  Given the constraints 
of flight test programs, including fuel 
limitations, airspace availability, and 
cost considerations, this methodology 
provides an empirical, data-driven 
approach to optimizing test efficiency.

RECOMMENDATIONS
Future work should focus on 
validating the method presented 
here against independently surveyed 
reference systems and assessing its 
applicability across a wider range 
of navigation technologies and test 
conditions.  Incorporating additional 
error sources like measurement noise 
and sensor drift into the model could 
further refine the accuracy of the 
predicted sample size.  By establishing 
a standardized process for determining 
statistically significant test durations, 
this methodology can possibly improve 
the rigor and efficiency of navigation 
system evaluations across military and 
civilian applications. 
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