Nano-Mechanical Study Good News for Silicon Use in Next-Gen Batteries

Home / Articles / External Non-Government

original

October 24, 2016 | Originally published by Date Line: October 24 on

A detailed nano-mechanical study of mechanical degradation processes in silicon structures containing varying levels of lithium ions offers good news for researchers attempting to develop reliable next-generation rechargeable batteries using silicon-based electrodes.

Anodes – the negative electrodes – based on silicon can theoretically store up to ten times more lithium ions than conventional graphite electrodes, making the material attractive for use in high-performance lithium-ion batteries. However, the brittleness of the material has discouraged efforts to use pure silicon in battery anodes, which must withstand dramatic volume changes during charge and discharge cycles.

Using a combination of experimental and simulation techniques, researchers from the Georgia Institute of Technology and three other research organizations have reported surprisingly high damage tolerance in electrochemically-lithiated silicon materials. The work suggests that all-silicon anodes may be commercially viable if battery charge levels are kept high enough to maintain the material in its ductile state.