Stealth aircraft in the Canadian arctic will be no match for a new quantum radar system.
Researchers at the University of Waterloo are developing a new technology that promises to help radar operators cut through heavy background noise and isolate objects β including stealth aircraft and missiles β with unparalleled accuracy.
βIn the Arctic, space weather such as geomagnetic storms and solar flares interfere with radar operation and make the effective identification of objects more challenging,β said Jonathan Baugh, a faculty member at the Institute for Quantum Computing (IQC) and a professor in the Department of Chemistry who is leading the project with three other researchers at IQC and the Waterloo Institute for Nanotechnology (WIN). βBy moving from traditional radar to quantum radar, we hope to not only cut through this noise, but also to identify objects that have been specifically designed to avoid detection.β
Stealth aircraft rely on special paint and body design to absorb and deflect radio waves β making them invisible to traditional radar. They also use electronic jamming to swamp detectors with artificial noise. With quantum radar, in theory, these planes will not only be exposed, but also unaware they have been detected.
The method works by sending one of the photons to a distant object, while retaining the other member of the pair. Photons in the return signal are checked for telltale signatures of entanglement, allowing photons from the noisy environmental background to be discarded. This can greatly improve the radar signal-to-noise in certain situations.